Error estimates for a class of finite difference-quadrature schemes for fully nonlinear degenerate parabolic integro-PDEs

被引:12
作者
Biswas, Imran H. [1 ]
Jakobsen, Espen R. [2 ]
Karlsen, Kenneth H. [1 ]
机构
[1] Univ Oslo, Ctr Math Applicat, NO-0316 Oslo, Norway
[2] Norwegian Univ Sci & Technol, N-7491 Trondheim, Norway
关键词
integro-partial differential equation; viscosity solution; finite difference scheme; error estimate; stochastic optimal control; Levy process; Bellman equation;
D O I
10.1142/S0219891608001416
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Error estimates are derived for a class of finite difference-quadrature schemes approximating viscosity solutions of nonlinear degenerate parabolic integro-PDEs with variable diffusion coefficients. The relevant equations can be viewed as Bellman equations associated to a class of controlled jump-diffusion (Levy) processes. The results cover both finite and infinite activity cases.
引用
收藏
页码:187 / 219
页数:33
相关论文
共 23 条
[1]   Viscosity solutions of nonlinear integro-differential equations [J].
Alvarez, O ;
Tourin, A .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1996, 13 (03) :293-317
[2]  
Amadori A. L., 2003, Differ. Integr. Equations, V16, P787
[3]  
Barles G., 1991, Asymptotic Analysis, V4, P271
[4]   Error bounds for monotone approximation schemes for Hamilton-Jacobi-Bellma equations [J].
Barles, G ;
Jakobsen, ER .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (02) :540-558
[5]   On the convergence rate of approximation schemes for Hamilton-Jacobi-Bellman equations [J].
Barles, G ;
Jakobsen, ER .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2002, 36 (01) :33-54
[6]  
Barles G., 1997, Stochastics Stochastics Rep., V60, P57, DOI 10.1080/17442509708834099
[7]   Error bounds for monotone approximation schemes for parabolic Hamilton-Jacobi-Bellman equations [J].
Barles, Guy ;
Jakobsen, Espen R. .
MATHEMATICS OF COMPUTATION, 2007, 76 (260) :1861-1893
[8]  
Benth F., 2001, FINANC STOCH, V5, P447, DOI DOI 10.1007/s007800000032
[9]  
Benth F.E., 2001, Finance Stochastic, V5, P275, DOI DOI 10.1007/PL00013538
[10]  
Benth F.E., 2002, Stochastic and Stochastic Reports, V74, P517