Aspergillus fumigatus Acetate Utilization Impacts Virulence Traits and Pathogenicity

被引:20
作者
Annick Ries, Laure Nicolas [1 ,11 ]
de Castro, Patricia Alves [2 ]
Silva, Lilian Pereira [2 ]
Valero, Clara [2 ]
dos Reis, Thaila Fernanda [2 ]
Saborano, Raquel [3 ]
Duarte, Iola F. [4 ]
Persinoti, Gabriela Felix [5 ]
Steenwyk, Jacob L. [6 ]
Rokas, Antonis [6 ]
Almeida, Fausto [1 ]
Costa, Jonas Henrique [7 ]
Fill, Taicia [7 ]
Wong, Sarah Sze Wah [8 ]
Aimanianda, Vishukumar [8 ]
Santos Rodrigues, Fernando Jose [9 ,10 ]
Goncales, Relber A. [9 ,10 ]
Duarte-Oliveira, Claudio [9 ,10 ]
Carvalho, Agostinho [9 ,10 ]
Goldman, Gustavo H. [2 ]
机构
[1] Univ Sao Paulo, Dept Bioquim & Imunol, Fac Med Ribeirao Preto, Sao Paulo, Brazil
[2] Univ Sao Paulo, Dept Ciencias Farmaceut, Fac Ciencias Farmaceut Ribeirao Preto, Sao Paulo, Brazil
[3] Univ Birmingham, Inst Canc & Genom Sci, Birmingham, England
[4] Univ Aveiro, CICECO Aveiro Inst Mat, Dept Chem, Aveiro, Portugal
[5] Brazilian Ctr Res Energy & Mat CNPEM, Brazilian Biorenewables Natl Lab LNBR, Campinas, Brazil
[6] Vanderbilt Univ, Dept Biol Sci, 221 Kirkland Hall, Nashville, TN 37235 USA
[7] Univ Estadual Campinas, Dept Quim Organ, Inst Quim, Campinas, SP, Brazil
[8] CNRS, Inst Pasteur, Mol Mycol Unit, UMR2000, Paris, France
[9] Univ Minho, Life & Hlth Sci Res Inst ICVS, Sch Med, Braga, Portugal
[10] ICVS 3Bs PT Govt Associate Lab, Braga, Portugal
[11] Univ Exeter, MRC Ctr Med Mycol, Exeter, Devon, England
来源
MBIO | 2021年 / 12卷 / 04期
基金
美国国家卫生研究院; 巴西圣保罗研究基金会;
关键词
Aspergillus fumigatus; acetate assimilation; cell wall; secondary metabolites; transcription factor; SIALIC ACIDS; CELL-SURFACE; METABOLISM; CARBON; GENE; IDENTIFICATION; INHIBITORS; MUTANTS; FACB; WALL;
D O I
10.1128/mBio.01682-21
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Aspergillus fumigatus is a major opportunistic fungal pathogen of immunocompromised and immunocompetent hosts. To successfully establish an infection, A. fumigatus needs to use host carbon sources, such as acetate, present in the body fluids and peripheral tissues. However, utilization of acetate as a carbon source by fungi in the context of infection has not been investigated. This work shows that acetate is metabolized via different pathways in A. fumigatus and that acetate utilization is under the regulatory control of a transcription factor (TF), FacB. A. fumigatus acetate utilization is subject to carbon catabolite repression (CCR), although this is only partially dependent on the TF and main regulator of CCR CreA. The available extracellular carbon source, in this case glucose and acetate, significantly affected A. fumigatus virulence traits such as secondary metabolite secretion and cell wall composition, with the latter having consequences for resistance to oxidative stress, antifungal drugs, and human neutrophil-mediated killing. Furthermore, deletion of facB significantly impaired the in vivo virulence of A. fumigatus in both insect and mammalian models of invasive aspergillosis. This is the first report on acetate utilization in A. fumigatus, and this work further highlights the importance of available host-specific carbon sources in shaping fungal virulence traits and subsequent disease outcome, and a potential target for the development of antifungal strategies. IMPORTANCE Aspergillus fumigatus is an opportunistic fungal pathogen in humans. During infection, A. fumigatus is predicted to use host carbon sources, such as acetate, present in body fluids and peripheral tissues, to sustain growth and promote colonization and invasion. This work shows that A. fumigatus metabolizes acetate via different pathways, a process that is dependent on the transcription factor FacB. Furthermore, the type and concentration of the extracellular available carbon source were determined to shape A. fumigatus virulence determinants such as secondary metabolite secretion and cell wall composition. Subsequently, interactions with immune cells are altered in a carbon source-specific manner. FacB is required for A. fumigatus in vivo virulence in both insect and mammalian models of invasive aspergillosis. This is the first report that characterizes acetate utilization in A. fumigatus and highlights the importance of available host-specific carbon sources in shaping virulence traits and potentially subsequent disease outcome.
引用
收藏
页数:23
相关论文
共 72 条
  • [41] Ability to grow on lipids accounts for the fully virulent phenotype in neutropenic mice of Aspergillus fumigatus null mutants in the key glyoxylate cycle enzymes
    Olivas, Israel
    Royuela, Mar
    Romero, Beatriz
    Monteiro, M. Candida
    Minguez, Jose M.
    Laborda, Fernando
    De Lucas, J. Ramon
    [J]. FUNGAL GENETICS AND BIOLOGY, 2008, 45 (01) : 45 - 60
  • [42] Divergent Targets of Aspergillus fumigatus AcuK and AcuM Transcription Factors during Growth In Vitro versus Invasive Disease
    Pongpom, Monsicha
    Liu, Hong
    Xu, Wenjie
    Snarr, Brendan D.
    Sheppard, Donald C.
    Mitchell, Aaron P.
    Filler, Scott G.
    [J]. INFECTION AND IMMUNITY, 2015, 83 (03) : 923 - 933
  • [43] The CRE1 carbon catabolite repressor of the fungus Trichoderma reesei: a master regulator of carbon assimilation
    Portnoy, Thomas
    Margeot, Antoine
    Linke, Rita
    Atanasova, Lea
    Fekete, Erzsebet
    Sandor, Erzsebet
    Hartl, Lukas
    Karaffa, Levente
    Druzhinina, Irina S.
    Seiboth, Bernhard
    Le Crom, Stephane
    Kubicek, Christian P.
    [J]. BMC GENOMICS, 2011, 12
  • [44] Copper Utilization, Regulation, and Acquisition by Aspergillus fumigatus
    Raffa, Nicholas
    Osherov, Nir
    Keller, Nancy P.
    [J]. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (08)
  • [45] A call to arms: Mustering secondary metabolites for success and survival of an opportunistic pathogen
    Raffa, Nicholas
    Keller, Nancy P.
    [J]. PLOS PATHOGENS, 2019, 15 (04)
  • [46] Regulatory Networks Controlling Nitrogen Sensing and Uptake in Candida albicans
    Ramachandra, Shruthi
    Linde, Joerg
    Brock, Matthias
    Guthke, Reinhard
    Hube, Bernhard
    Brunke, Sascha
    [J]. PLOS ONE, 2014, 9 (03):
  • [47] A Role for the Unfolded Protein Response (UPR) in Virulence and Antifungal Susceptibility in Aspergillus fumigatus
    Richie, Daryl L.
    Hartl, Lukas
    Aimanianda, Vishukumar
    Winters, Michael S.
    Fuller, Kevin K.
    Miley, Michael D.
    White, Stephanie
    McCarthy, Jason W.
    Latge, Jean-Paul
    Feldmesser, Marta
    Rhodes, Judith C.
    Askew, David S.
    [J]. PLOS PATHOGENS, 2009, 5 (01)
  • [48] Diverse Regulation of the CreA Carbon Catabolite Repressor in Aspergillus nidulans
    Ries, Laure N. A.
    Beattie, Sarah R.
    Espeso, Eduardo A.
    Cramer, Robert A.
    Goldman, Gustavo H.
    [J]. GENETICS, 2016, 203 (01) : 335 - +
  • [49] Analyses of the three 1-Cys Peroxiredoxins from Aspergillus fumigatus reveal that cytosolic Prx1 is central to H2O2 metabolism and virulence
    Rocha, Marina Campos
    de Godoy, Krissia Franco
    Bannitz-Fernandes, Renata
    Marilhano Fabri, Joao H. T.
    Ferrari Barbosa, Mayra M.
    de Castro, Patricia Alves
    Almeida, Fausto
    Goldman, Gustavo Henrique
    da Cunha, Anderson Ferreira
    Netto, Luis E. S.
    de Oliveira, Marcos Antonio
    Malavazi, Iran
    [J]. SCIENTIFIC REPORTS, 2018, 8
  • [50] Identification of N-acetylneuraminic acid and its 9-O-acetylated derivative on the cell surface of Cryptococcus neoformans: Influence on fungal phagocytosis
    Rodrigues, ML
    Rozental, S
    Couceiro, JNSS
    Angluster, J
    Alviano, CS
    Travassos, LR
    [J]. INFECTION AND IMMUNITY, 1997, 65 (12) : 4937 - 4942