FGWAS: Functional genome wide association analysis

被引:44
作者
Huang, Chao [1 ,2 ]
Thompson, Paul [3 ]
Wang, Yalin [4 ]
Yu, Yang [5 ]
Zhang, Jingwen [1 ,2 ]
Kong, Dehan [6 ]
Colen, Rivka R. [7 ]
Knickmeyer, Rebecca C. [8 ]
Zhu, Hongtu [1 ,2 ]
机构
[1] Univ Texas MD Anderson Canc Ctr, Dept Biostat, Houston, TX 77030 USA
[2] Univ North Carolina Chapel Hill, Dept Biostat, Chapel Hill, NC USA
[3] Univ Southern Calif, Imaging Genet Ctr, Stevens Inst Neuroimaging & Informat, Marina Del Rey, CA USA
[4] Arizona State Univ, Sch Comp Informat & Decis Syst Engn, Tempe, AZ USA
[5] Univ North Carolina Chapel Hill, Dept Stat & Operat Res, Chapel Hill, NC USA
[6] Univ Toronto, Dept Stat Sci, Toronto, ON, Canada
[7] Univ Texas MD Anderson Canc Ctr, Dept Diagnost Radiol, Houston, TX 77030 USA
[8] Univ North Carolina Chapel Hill, Dept Psychiat, Chapel Hill, NC USA
基金
美国国家卫生研究院; 加拿大健康研究院;
关键词
Computational complexity; Functional genome wide association analysis; Multivariate varying coefficient model; Wild bootstrap; ALZHEIMERS-DISEASE; GENE; VISUALIZATION; PHENOTYPES; TRAITS; MODELS; SET; AD;
D O I
10.1016/j.neuroimage.2017.07.030
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Functional phenotypes (e.g., subcortical surface representation), which commonly arise in imaging genetic studies, have been used to detect putative genes for complexly inherited neuropsychiatric and neurodegenerative disorders. However, existing statistical methods largely ignore the functional features (e.g., functional smoothness and correlation). The aim of this paper is to develop a functional genome-wide association analysis (FGWAS) framework to efficiently carry out whole-genome analyses of functional phenotypes. FGWAS consists of three components: a multivariate varying coefficient model, a global sure independence screening procedure, and a test procedure. Compared with the standard multivariate regression model, the multivariate varying coefficient model explicitly models the functional features of functional phenotypes through the integration of smooth coefficient functions and functional principal component analysis. Statistically, compared with existing methods for genomewide association studies (GWAS), FGWAS can substantially boost the detection power for discovering important genetic variants influencing brain structure and function. Simulation studies show that FGWAS outperforms existing GWAS methods for searching sparse signals in an extremely large search space, while controlling for the family-wise error rate. We have successfully applied FGWAS to large-scale analysis of data from the Alzheimer's Disease Neuroimaging Initiative for 708 subjects, 30,000 vertices on the left and right hippocampal surfaces, and 501,584 SNPs.
引用
收藏
页码:107 / 121
页数:15
相关论文
共 53 条
[1]   Haploview: analysis and visualization of LD and haplotype maps [J].
Barrett, JC ;
Fry, B ;
Maller, J ;
Daly, MJ .
BIOINFORMATICS, 2005, 21 (02) :263-265
[2]   MULTILEVEL FUNCTIONAL PRINCIPAL COMPONENT ANALYSIS [J].
Di, Chong-Zhi ;
Crainiceanu, Ciprian M. ;
Caffo, Brian S. ;
Punjabi, Naresh M. .
ANNALS OF APPLIED STATISTICS, 2009, 3 (01) :458-488
[3]  
Duvernoy H.M., 2005, HUMAN HIPPOCAMPUS FU
[4]  
Fan J., 1996, LOCAL POLYNOMIAL MOD
[5]   Sure independence screening for ultrahigh dimensional feature space [J].
Fan, Jianqing ;
Lv, Jinchi .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2008, 70 :849-883
[6]   Statistical estimation in varying coefficient models [J].
Fan, JQ ;
Zhang, WY .
ANNALS OF STATISTICS, 1999, 27 (05) :1491-1518
[7]   FreeSurfer [J].
Fischl, Bruce .
NEUROIMAGE, 2012, 62 (02) :774-781
[8]   In vivo neuropathology of the hippocampal formation in AD: A radial mapping MR-based study [J].
Frisoni, G. B. ;
Sabattoli, F. ;
Lee, A. D. ;
Dutton, R. A. ;
Toga, A. W. ;
Thompson, P. M. .
NEUROIMAGE, 2006, 32 (01) :104-110
[9]   Mapping local hippocampal changes in Alzheimers disease and normal ageing with MRI at 3 Tesla [J].
Frisoni, Giovanni B. ;
Ganzola, Rossana ;
Canu, Elisa ;
Rueb, Udo ;
Pizzini, Francesca B. ;
Alessandrini, Franco ;
Zoccatelli, Giada ;
Beltramello, Alberto ;
Caltagirone, Carlo ;
Thompson, Paul M. .
BRAIN, 2008, 131 :3266-3276
[10]   Identifying significant gene-environment interactions using a combination of screening testing and hierarchical false discovery rate control [J].
Frost, H. Robert ;
Shen, Li ;
Saykin, Andrew J. ;
Williams, Scott M. ;
Moore, Jason H. .
GENETIC EPIDEMIOLOGY, 2016, 40 (07) :544-557