共 50 条
Supercritical CO2-Shale interaction induced natural fracture closure: Implications for scCO2 hydraulic fracturing in shales
被引:67
|作者:
Memon, Shoaib
[1
]
Feng, Runhua
[1
]
Ali, Muhammad
[1
,4
]
Bhatti, Masood Ahmed
[5
]
Giwelli, Ausama
[3
]
Keshavarz, Alireza
[2
]
Xie, Quan
[1
]
Sarmadivaleh, Mohammad
[1
]
机构:
[1] Curtin Univ, Western Australia Sch Mines Minerals Energy & Che, 26 Dick Perry Ave, Kensington, WA 6151, Australia
[2] Edith Cowan Univ, Sch Engn, 270 Joondalup Dr, Joondalup, WA 6027, Australia
[3] Australian Resources Res Ctr ARRC, CSIRO Energy, 26 Dick Perry Ave, Kensington, WA 6151, Australia
[4] King Abdullah Univ Sci & Technol KAUST, Phys Sci & Engn Div, Thuwal, Saudi Arabia
[5] Premier Oilfield Solut PVT LTD, Sect 1-11-2, Islamabad, Pakistan
来源:
关键词:
Supercritical Carbon dioxide;
Fracturing;
scCO 2-shale interactions;
Adsorption swelling;
Natural fractures;
Shale;
CARBON-DIOXIDE;
PORE STRUCTURE;
CO2-BRINE-ROCK INTERACTION;
MECHANICAL-PROPERTIES;
CO2;
SEQUESTRATION;
WATER;
PRESSURE;
SORPTION;
FLUIDS;
PERMEABILITY;
D O I:
10.1016/j.fuel.2021.122682
中图分类号:
TE [石油、天然气工业];
TK [能源与动力工程];
学科分类号:
0807 ;
0820 ;
摘要:
Multi-stage hydraulic fracturing has been identified as a must to develop shale gas reservoirs by increasing the stimulated reservoir volume (SRV). Supercritical CO2 (scCO2) has been studied as an alternating fracturing fluid due to its tendency to solve numerous problems associated with conventional aqueous based hydraulic fracturing such as formation damage, clay swelling, water scarcity and ground water contamination. However, its consequences to the host rock are not well understood. It has been recognized that scCO2-shale interaction alters the petrophysical properties during the long-term exposure of shale into scCO2, far little attention has been paid to understand the impact of this process for the short term. Thus, laboratory fracturing experiments using scCO2 on cubic shale samples (50 x 50 x 50 mm) in true triaxial stress cell (TTSC) were conducted. X-ray computed tomography (CT) imaging and low-pressure N2 adsorption were also performed to gain a deeper understanding of the fluid-rock interactions on the studied shales at a short-time process. Post-fracturing x-ray CT scans revealed a significant reduction, in the range of 14% to 46%, in the aperture of the natural fractures, indicating towards a possible scCO2 induced swelling. Mechanical compression test on the sample results in around 12% reduction in the fracture aperture, ruling out the possibility of confining stress being the key factor behind the fracture closure observed during fracturing. scCO2 soaking and N2 adsorption experiments showed the narrowing down of the macropores after scCO2 treatment implying the adsorption swelling as one of the controlling factors for the reduction of fracture aperture. Taken together, our results suggest that scCO2-shale interactions during the short term process of hydraulic fracturing can contribute to decreasing the conductivity of pathways between matrix and hydraulic fractures and hence adversely affecting the post-fracturing productivity of the rock.
引用
收藏
页数:15
相关论文