Supercritical CO2-Shale interaction induced natural fracture closure: Implications for scCO2 hydraulic fracturing in shales

被引:67
|
作者
Memon, Shoaib [1 ]
Feng, Runhua [1 ]
Ali, Muhammad [1 ,4 ]
Bhatti, Masood Ahmed [5 ]
Giwelli, Ausama [3 ]
Keshavarz, Alireza [2 ]
Xie, Quan [1 ]
Sarmadivaleh, Mohammad [1 ]
机构
[1] Curtin Univ, Western Australia Sch Mines Minerals Energy & Che, 26 Dick Perry Ave, Kensington, WA 6151, Australia
[2] Edith Cowan Univ, Sch Engn, 270 Joondalup Dr, Joondalup, WA 6027, Australia
[3] Australian Resources Res Ctr ARRC, CSIRO Energy, 26 Dick Perry Ave, Kensington, WA 6151, Australia
[4] King Abdullah Univ Sci & Technol KAUST, Phys Sci & Engn Div, Thuwal, Saudi Arabia
[5] Premier Oilfield Solut PVT LTD, Sect 1-11-2, Islamabad, Pakistan
关键词
Supercritical Carbon dioxide; Fracturing; scCO 2-shale interactions; Adsorption swelling; Natural fractures; Shale; CARBON-DIOXIDE; PORE STRUCTURE; CO2-BRINE-ROCK INTERACTION; MECHANICAL-PROPERTIES; CO2; SEQUESTRATION; WATER; PRESSURE; SORPTION; FLUIDS; PERMEABILITY;
D O I
10.1016/j.fuel.2021.122682
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Multi-stage hydraulic fracturing has been identified as a must to develop shale gas reservoirs by increasing the stimulated reservoir volume (SRV). Supercritical CO2 (scCO2) has been studied as an alternating fracturing fluid due to its tendency to solve numerous problems associated with conventional aqueous based hydraulic fracturing such as formation damage, clay swelling, water scarcity and ground water contamination. However, its consequences to the host rock are not well understood. It has been recognized that scCO2-shale interaction alters the petrophysical properties during the long-term exposure of shale into scCO2, far little attention has been paid to understand the impact of this process for the short term. Thus, laboratory fracturing experiments using scCO2 on cubic shale samples (50 x 50 x 50 mm) in true triaxial stress cell (TTSC) were conducted. X-ray computed tomography (CT) imaging and low-pressure N2 adsorption were also performed to gain a deeper understanding of the fluid-rock interactions on the studied shales at a short-time process. Post-fracturing x-ray CT scans revealed a significant reduction, in the range of 14% to 46%, in the aperture of the natural fractures, indicating towards a possible scCO2 induced swelling. Mechanical compression test on the sample results in around 12% reduction in the fracture aperture, ruling out the possibility of confining stress being the key factor behind the fracture closure observed during fracturing. scCO2 soaking and N2 adsorption experiments showed the narrowing down of the macropores after scCO2 treatment implying the adsorption swelling as one of the controlling factors for the reduction of fracture aperture. Taken together, our results suggest that scCO2-shale interactions during the short term process of hydraulic fracturing can contribute to decreasing the conductivity of pathways between matrix and hydraulic fractures and hence adversely affecting the post-fracturing productivity of the rock.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Supercritical CO2 mediated functionalization of highly porous emulsion-derived foams: ScCO2 absorption and epoxidation
    Trupej, Nina
    Novak, Zoran
    Knez, Zeljko
    Slugovc, Christian
    Kovacic, Sebastijan
    JOURNAL OF CO2 UTILIZATION, 2017, 21 : 336 - 341
  • [42] An experimental apparatus for supercritical CO2 fracturing of shale: System design and application tests
    Zhu, Wancheng
    Zhang, Xiufeng
    Liu, Shuyuan
    Wei, Chenhui
    Wang, Jiangmei
    Liu, Heyang
    JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2022, 103
  • [43] Research on microscale displacement characteristics of supercritical CO2 fracturing in shale oil reservoirs
    Dai, Xiaodong
    CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2024,
  • [44] Interaction mechanism of supercritical CO2 with shales and a new quantitative storage capacity evaluation method
    Dai, Xuguang
    Wei, Chongtao
    Wang, Meng
    Ma, Ruying
    Song, Yu
    Zhang, Junjian
    Wang, Xiaoqi
    Shi, Xuan
    Vandeginste, Veerle
    ENERGY, 2023, 264
  • [45] Influence of Supercritical CO2 Exposure on CH4 and CO2 Adsorption Behaviors of Shale: Implications for CO2 Sequestration
    Zhou, Junping
    Xie, Shuang
    Jiang, Yongdong
    Xian, Xuefu
    Liu, Qili
    Lu, Zhaohui
    Lyu, Qiao
    ENERGY & FUELS, 2018, 32 (05) : 6073 - 6089
  • [46] Optimization design of hydraulic parameters for supercritical CO2 fracturing in unconventional gas reservoir
    Wang, Jintang
    Wang, Zhiyuan
    Sun, Baojiang
    Gao, Yonghai
    Wang, Xin
    Fu, Weiqi
    FUEL, 2019, 235 : 795 - 809
  • [47] CO2-water-shale interaction induced shale microstructural alteration
    Zhou, Junping
    Yang, Kang
    Tian, Shifeng
    Zhou, Lei
    Xian, Xuefu
    Jiang, Yongdong
    Liu, Muhan
    Cai, Jianchao
    FUEL, 2020, 263
  • [48] Caprock interaction with CO2: A laboratory study of reactivity of shale with supercritical CO2 and brine
    Alemu, Binyam L.
    Aagaard, Per
    Munz, Ingrid Anne
    Skurtveit, Elin
    APPLIED GEOCHEMISTRY, 2011, 26 (12) : 1975 - 1989
  • [49] Experimental study on the feasibility of supercritical CO2-gel fracturing for stimulating shale oil reservoirs
    Li, Sihai
    Zhang, Shicheng
    Zou, Yushi
    Zhang, Xi
    Ma, Xinfang
    Wu, Shan
    Zhang, Zhaopeng
    Sun, Zhiyu
    Liu, Changyin
    ENGINEERING FRACTURE MECHANICS, 2020, 238
  • [50] Influence of Supercritical CO2 Fracturing Mode on the Fracture Morphology and Propagation Characteristics of Coal
    Sun, Xiaodong
    Zhao, Kaikai
    Wang, Shibin
    Song, Xuehang
    Liu, Liyuan
    ENERGY & FUELS, 2024, 38 (05) : 4325 - 4336