SUFFICIENT DIMENSION REDUCTION FOR LONGITUDINAL DATA

被引:9
作者
Bi, Xuan [1 ]
Qu, Annie [1 ]
机构
[1] Univ Illinois, Dept Stat, Champaign, IL 61820 USA
基金
美国国家科学基金会;
关键词
Correlation structure; eigen-decomposition; quadratic inference function; slice inverse regression; transformation method; SLICED INVERSE REGRESSION; VISUALIZATION; VARIANCE;
D O I
10.5705/ss.2013.168
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Correlation structure contains important information about longitudinal data. Existing sufficient dimension reduction approaches assuming independence may lead to substantial loss of efficiency. We apply the quadratic inference function to incorporate the correlation information and apply the transformation method to recover the central subspace. The proposed estimators are shown to be consistent and more efficient than the ones assuming independence. In addition, the estimated central subspace is also efficient when the correlation information is taken into account. We compare the proposed method with other dimension reduction approaches through simulation studies, and apply this new approach to longitudinal data for an environmental health study.
引用
收藏
页码:787 / 807
页数:21
相关论文
共 50 条
  • [21] EFFICIENT ESTIMATION IN SUFFICIENT DIMENSION REDUCTION
    Ma, Yanyuan
    Zhu, Liping
    [J]. ANNALS OF STATISTICS, 2013, 41 (01) : 250 - 268
  • [22] Sufficient dimension reduction with missing predictors
    Li, Lexin
    Lu, Wenbin
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2008, 103 (482) : 822 - 831
  • [23] Sufficient dimension reduction with additional information
    Hung, Hung
    Liu, Chih-Yen
    Lu, Henry Horng-Shing
    [J]. BIOSTATISTICS, 2016, 17 (03) : 405 - 421
  • [24] On hierarchical clustering in sufficient dimension reduction
    Yoo, Chaeyeon
    Yoo, Younju
    Um, Hye Yeon
    Yoo, Jae Keun
    [J]. COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2020, 27 (04) : 431 - 443
  • [25] A unified approach to sufficient dimension reduction
    Xue, Yuan
    Wang, Qin
    Yin, Xiangrong
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2018, 197 : 168 - 179
  • [26] Diagnostic studies in sufficient dimension reduction
    Chen, Xin
    Cook, R. Dennis
    Zou, Changliang
    [J]. BIOMETRIKA, 2015, 102 (03) : 545 - 558
  • [27] Sparse sufficient dimension reduction with heteroscedasticity
    Cheng, Haoyang
    Cui, Wenquan
    [J]. INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2022, 20 (01)
  • [28] Sufficient dimension reduction and prediction in regression
    Adragni, Kofi P.
    Cook, R. Dennis
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2009, 367 (1906): : 4385 - 4405
  • [29] DEEP NONLINEAR SUFFICIENT DIMENSION REDUCTION
    Chen, YinFeng
    Jiao, YuLing
    Qiu, Rui
    Hu, Zhou
    [J]. ANNALS OF STATISTICS, 2024, 52 (03) : 1201 - 1226
  • [30] Sparse kernel sufficient dimension reduction
    Liu, Bingyuan
    Xue, Lingzhou
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2024,