temporal modeling;
spatio-temporal motion;
group convolution;
spatial attention;
D O I:
10.3390/e24030368
中图分类号:
O4 [物理学];
学科分类号:
0702 ;
摘要:
Temporal modeling is the key for action recognition in videos, but traditional 2D CNNs do not capture temporal relationships well. 3D CNNs can achieve good performance, but are computationally intensive and not well practiced on existing devices. Based on these problems, we design a generic and effective module called spatio-temporal motion network (SMNet). SMNet maintains the complexity of 2D and reduces the computational effort of the algorithm while achieving performance comparable to 3D CNNs. SMNet contains a spatio-temporal excitation module (SE) and a motion excitation module (ME). The SE module uses group convolution to fuse temporal information to reduce the number of parameters in the network, and uses spatial attention to extract spatial information. The ME module uses the difference between adjacent frames to extract feature-level motion patterns between adjacent frames, which can effectively encode motion features and help identify actions efficiently. We use ResNet-50 as the backbone network and insert SMNet into the residual blocks to form a simple and effective action network. The experiment results on three datasets, namely Something-Something V1, Something-Something V2, and Kinetics-400, show that it out performs state-of-the-arts motion recognition networks.
机构:
Sun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou 510006, Peoples R ChinaSun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou 510006, Peoples R China
Li, Ao
Yi, Yang
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou 510006, Peoples R China
Sun Yat Sen Univ, Xinhua Coll, Guangzhou 510520, Peoples R China
Guangdong Key Lab Big Data Anal & Proc, Guangzhou 510275, Peoples R ChinaSun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou 510006, Peoples R China
Yi, Yang
Liang, Daan
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou 510006, Peoples R ChinaSun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou 510006, Peoples R China
机构:
Xuzhou Univ Technol, Sch Informat Engn, Xuzhou, Jiangsu, Peoples R ChinaXuzhou Univ Technol, Sch Informat Engn, Xuzhou, Jiangsu, Peoples R China
Li, Fanjia
Zhu, Aichun
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Tech Univ, Sch Comp Sci & Technol, Nanjing, Peoples R ChinaXuzhou Univ Technol, Sch Informat Engn, Xuzhou, Jiangsu, Peoples R China
Zhu, Aichun
Li, Juanjuan
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Min & Technol, State Key Lab GeoMech & Deep Underground Engn, Xuzhou, Jiangsu, Peoples R ChinaXuzhou Univ Technol, Sch Informat Engn, Xuzhou, Jiangsu, Peoples R China
Li, Juanjuan
Xu, Yonggang
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Min & Technol, Sch Informat & Control Engn, Xuzhou, Jiangsu, Peoples R ChinaXuzhou Univ Technol, Sch Informat Engn, Xuzhou, Jiangsu, Peoples R China
Xu, Yonggang
Zhang, Yandong
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Min & Technol, Sch Mines, Xuzhou, Jiangsu, Peoples R ChinaXuzhou Univ Technol, Sch Informat Engn, Xuzhou, Jiangsu, Peoples R China
Zhang, Yandong
Yin, Hongsheng
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Min & Technol, Sch Informat & Control Engn, Xuzhou, Jiangsu, Peoples R ChinaXuzhou Univ Technol, Sch Informat Engn, Xuzhou, Jiangsu, Peoples R China
Yin, Hongsheng
Hua, Gang
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Min & Technol, Sch Informat & Control Engn, Xuzhou, Jiangsu, Peoples R ChinaXuzhou Univ Technol, Sch Informat Engn, Xuzhou, Jiangsu, Peoples R China
机构:
Zhengzhou Univ Light Ind, Engn Training Ctr, Zhengzhou 450001, Peoples R ChinaZhengzhou Univ Light Ind, Engn Training Ctr, Zhengzhou 450001, Peoples R China
Chen, Yuanling
Liu, Peisen
论文数: 0引用数: 0
h-index: 0
机构:
Zhengzhou Univ Light Ind, Sch Elect Informat, Zhengzhou 450001, Peoples R ChinaZhengzhou Univ Light Ind, Engn Training Ctr, Zhengzhou 450001, Peoples R China
Liu, Peisen
Li, Duan
论文数: 0引用数: 0
h-index: 0
机构:
Zhengzhou Univ Light Ind, Sch Elect Informat, Zhengzhou 450001, Peoples R ChinaZhengzhou Univ Light Ind, Engn Training Ctr, Zhengzhou 450001, Peoples R China