temporal modeling;
spatio-temporal motion;
group convolution;
spatial attention;
D O I:
10.3390/e24030368
中图分类号:
O4 [物理学];
学科分类号:
0702 ;
摘要:
Temporal modeling is the key for action recognition in videos, but traditional 2D CNNs do not capture temporal relationships well. 3D CNNs can achieve good performance, but are computationally intensive and not well practiced on existing devices. Based on these problems, we design a generic and effective module called spatio-temporal motion network (SMNet). SMNet maintains the complexity of 2D and reduces the computational effort of the algorithm while achieving performance comparable to 3D CNNs. SMNet contains a spatio-temporal excitation module (SE) and a motion excitation module (ME). The SE module uses group convolution to fuse temporal information to reduce the number of parameters in the network, and uses spatial attention to extract spatial information. The ME module uses the difference between adjacent frames to extract feature-level motion patterns between adjacent frames, which can effectively encode motion features and help identify actions efficiently. We use ResNet-50 as the backbone network and insert SMNet into the residual blocks to form a simple and effective action network. The experiment results on three datasets, namely Something-Something V1, Something-Something V2, and Kinetics-400, show that it out performs state-of-the-arts motion recognition networks.
机构:
Nuctech Co Ltd, R&D Ctr Artificial Intelligent, Beijing 100084, Peoples R ChinaNuctech Co Ltd, R&D Ctr Artificial Intelligent, Beijing 100084, Peoples R China
Yang, Hao
Yuan, Chunfeng
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100190, Peoples R ChinaNuctech Co Ltd, R&D Ctr Artificial Intelligent, Beijing 100084, Peoples R China
Yuan, Chunfeng
Zhang, Li
论文数: 0引用数: 0
h-index: 0
机构:
Tsinghua Univ, Dept Engn Phys, Beijing 100084, Peoples R ChinaNuctech Co Ltd, R&D Ctr Artificial Intelligent, Beijing 100084, Peoples R China
Zhang, Li
Sun, Yunda
论文数: 0引用数: 0
h-index: 0
机构:
Nuctech Co Ltd, R&D Ctr Artificial Intelligent, Beijing 100084, Peoples R ChinaNuctech Co Ltd, R&D Ctr Artificial Intelligent, Beijing 100084, Peoples R China
Sun, Yunda
Hu, Weiming
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Natl Lab Pattern Recognit, Ctr Excellence Brain Sci & Intelligence Technol, Inst Automat, Beijing 100190, Peoples R China
Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100190, Peoples R ChinaNuctech Co Ltd, R&D Ctr Artificial Intelligent, Beijing 100084, Peoples R China
Hu, Weiming
Maybank, Stephen J.
论文数: 0引用数: 0
h-index: 0
机构:
Univ London, Birkbeck Coll, Dept Comp Sci & Informat Syst, London WC1E 7HX, EnglandNuctech Co Ltd, R&D Ctr Artificial Intelligent, Beijing 100084, Peoples R China
机构:
North China Univ Technol, Sch Informat Sci & Technol, Beijing 100144, Peoples R ChinaNorth China Univ Technol, Sch Informat Sci & Technol, Beijing 100144, Peoples R China
Ye, Qing
Tan, Zexian
论文数: 0引用数: 0
h-index: 0
机构:
North China Univ Technol, Sch Informat Sci & Technol, Beijing 100144, Peoples R China
Bank Beijing, Syst Operat Ctr, Beijing 100033, Peoples R ChinaNorth China Univ Technol, Sch Informat Sci & Technol, Beijing 100144, Peoples R China
Tan, Zexian
Zhang, Yongmei
论文数: 0引用数: 0
h-index: 0
机构:
North China Univ Technol, Sch Informat Sci & Technol, Beijing 100144, Peoples R ChinaNorth China Univ Technol, Sch Informat Sci & Technol, Beijing 100144, Peoples R China