Towards Quality Control in Soft Actuators by Computer Vision

被引:0
作者
Navas, Eduardo [1 ]
Fernandez, Roemi [1 ]
Navas-Merlo, Carlos [1 ]
Armada, Manuel [2 ]
Gonzalez-de-Santos, Pablo [1 ]
机构
[1] CAR CSIC UPM, Ctr Automat & Robot, Madrid, Spain
[2] Univ Valladolid, Dept Teoria Senal & Ingn Telemat, Valladolid, Spain
来源
2022 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS (ICARSC) | 2022年
关键词
Quality Control; Computer Vision; Soft Actuators; Manufacturing Process;
D O I
10.1109/ICARSC55462.2022.9784805
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Quality control is a key step in any manufacturing process in the industry. However, it is still an unexplored area in soft robotics, especially in the production of soft actuators. This article proposes a quality control method based on a series of specific tests and analyzes using computer vision to verify the performance of these actuators and identify possible manufacturing defects. Facilitating automation and faster implementation of quality control will help bring this technology closer to industrialization.
引用
收藏
页码:142 / 147
页数:6
相关论文
共 50 条
  • [31] Towards automated computer vision: analysis of the AutoCV challenges 2019?
    Liu, Zhengying
    Xu, Zhen
    Escalera, Sergio
    Guyon, Isabelle
    Jacques Junior, Julio C. S.
    Madadi, Meysam
    Pavao, Adrien
    Treguer, Sebastien
    Tu, Wei-Wei
    [J]. PATTERN RECOGNITION LETTERS, 2020, 135 : 196 - 203
  • [32] Towards Executing Computer Vision Functionality on Programmable Network Devices
    Glebke, Rene
    Krude, Johannes
    Kunze, Ike
    Ruth, Jan
    Senger, Felix
    Wehrle, Klaus
    [J]. PROCEEDINGS OF THE 1ST ACM CONEXT WORKSHOP ON EMERGING IN-NETWORK COMPUTING PARADIGMS (ENCP '19), 2019, : 15 - 20
  • [33] Identification of Rice Storage Quality Based on Computer Vision
    Wu, Li-li
    Zheng, Bao-zhou
    Xing, Yu-qing
    Lin, Ai-ying
    [J]. INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE: TECHNIQUES AND APPLICATIONS, AITA 2016, 2016, : 120 - 125
  • [34] Determination of Quality grading of Beef Marbling by Computer vision
    Fu, Lisi
    Yuan, Fengwei
    [J]. 2011 AASRI CONFERENCE ON APPLIED INFORMATION TECHNOLOGY (AASRI-AIT 2011), VOL 2, 2011, : 209 - 212
  • [35] Computer Vision System for Food Quality Evaluation - A Review
    Nandhini, P.
    Jaya, J.
    George, Jaina
    [J]. 2013 INTERNATIONAL CONFERENCE ON CURRENT TRENDS IN ENGINEERING AND TECHNOLOGY (ICCTET), 2013, : 85 - 87
  • [36] Quality classification of corn tortillas using computer vision
    Mery, Domingo
    Chanona-Perez, Jorge J.
    Soto, Alvaro
    Miguel Aguilera, Jose
    Cipriano, Aldo
    Velez-Rivera, Nayeli
    Arzate-Vazquez, Israel
    Gutierrez-Lopez, Gustavo F.
    [J]. JOURNAL OF FOOD ENGINEERING, 2010, 101 (04) : 357 - 364
  • [37] Estimating Mushroom Yield and Quality Using Computer Vision
    Benhaddou, Driss
    Balan, Venkatesh
    De La Garza, Alessandro
    Merchant, Fatima
    [J]. 2023 INTERNATIONAL WIRELESS COMMUNICATIONS AND MOBILE COMPUTING, IWCMC, 2023, : 562 - 567
  • [38] Using Explanations to Estimate the Quality of Computer Vision Models
    Oliveira, Filipe
    Carneiro, Davide
    Pereira, Joao
    [J]. HUMAN-CENTRED TECHNOLOGY MANAGEMENT FOR A SUSTAINABLE FUTURE, VOL 2, IAMOT, 2025, : 293 - 301
  • [39] Vision system in quality control automation
    Kiran, Ravi
    Amarendra, H. J.
    Lingappa, Shashank
    [J]. INTERNATIONAL CONFERENCE ON RESEARCH IN MECHANICAL ENGINEERING SCIENCES (RIMES 2017), 2018, 144
  • [40] Tampoprint quality control by artificial vision
    Truchetet, F
    Cholley, JP
    [J]. MATERIALS EVALUATION, 1997, 55 (12) : 1361 - 1366