Energy and exergy investigation on two improved IGCC power plants with different CO2 capture schemes

被引:25
作者
Cao, Yang [1 ]
He, Boshu [1 ,2 ,3 ]
Ding, Guangchao [1 ]
Su, Liangbin [1 ]
Duan, Zhipeng [1 ]
机构
[1] Beijing Jiaotong Univ, Sch Mech Elect & Control Engn, Inst Combust & Thermal Syst, Beijing 100044, Peoples R China
[2] Beijing Jiaotong Univ, Beijing Key Lab Powertrain New Energy Vehicle, Beijing 100044, Peoples R China
[3] Beijing Jiaotong Univ, Haibin Coll, Dept Mech & Elect Engn, Huanghua 061199, Hebei, Peoples R China
基金
中国国家自然科学基金;
关键词
Energy; Exergy; Chemical looping air separation (CLAS); Integrated gasification combined cycle (IGCC); CO2; capture; LOOPING AIR SEPARATION; CARBON CAPTURE; COAL-GASIFICATION; OXYGEN CARRIERS; STORAGE; INTEGRATION; GENERATION; HYDROGEN; SYSTEM; OPTIMIZATION;
D O I
10.1016/j.energy.2017.08.044
中图分类号
O414.1 [热力学];
学科分类号
摘要
Two power generation systems composed of the chemical looping air separation (CLAS) technology and the integrated gasification combined cycle (IGCC) with CO2 capture are conceptually presented, thermodynamically analyzed and compared. Different CO2 capture approaches including the pre-combustion with polyethylene glycol dimethyl ether (PGDE) and the post-combustion with monoethanolamine (MEA) are respectively adopted in the two systems. Blocked energy losses and exergy destructions are calculated to investigate the overall efficiencies of the systems. Sensitivity analyses are carried out to investigate the effects of different operating parameters including the oxygen to coal mass ratio (R-OC), the steam to coal mass ratio (R-SC) and the temperature of the reduction reactor (T-RR) on the energy efficiencies (eta(en)) and exergy efficiencies (eta(ex)) of the two systems. The maximum energy losses and exergy destructions are found in the CO2 capture units. R-OC of 0.75, R-SC of 0.06 and T-RR of 850 degrees C are recommended as the optimum operation parameters based on the sensitivity analyses. With the optimized parameters, the energy and exergy efficiencies are predicted to be 37.36% and 34.50% for the system with post-combustion CO2 capture, while 38.67% and 36.19% for the system with pre-combustion CO2 capture. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:47 / 57
页数:11
相关论文
共 50 条
  • [31] Comparative performance assessment of USC and IGCC power plants integrated with CO2 capture systems
    Cau, Giorgio
    Tola, Vittorio
    Deiana, Paolo
    FUEL, 2014, 116 : 820 - 833
  • [32] Thermodynamic Simulation of CO2 Capture for an IGCC Power Plant using the Calcium Looping Cycle
    Li, Yingjie
    Zhao, Changsui
    Ren, Qiangqiang
    CHEMICAL ENGINEERING & TECHNOLOGY, 2011, 34 (06) : 946 - 954
  • [33] Techno-economic analysis of power and hydrogen co-production by an IGCC plant with CO2 capture based on membrane technology
    Sofia, Daniele
    Giuliano, Aristide
    Poletto, Massimo
    Barletta, Diego
    12TH INTERNATIONAL SYMPOSIUM ON PROCESS SYSTEMS ENGINEERING (PSE) AND 25TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING (ESCAPE), PT B, 2015, 37 : 1373 - 1378
  • [34] EFFECT OF DIFFERENT CONFIGURATIONS OF PHYSICAL SOLVENT BASED ACID GAS REMOVAL AND CO2 CAPTURE FOR IGCC CCS POWER PLANTS
    Novotny, V
    Vitvarova, M.
    PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON CHEMICAL TECHNOLOGY, 1ST EDITION, 2016, : 308 - 314
  • [35] Life-cycle performance of natural gas power plants with pre-combustion CO2 capture
    Petrakopoulou, Fontina
    Iribarren, Diego
    Dufour, Javier
    GREENHOUSE GASES-SCIENCE AND TECHNOLOGY, 2015, 5 (03): : 268 - 276
  • [36] Energy and exergy analysis of hydrogen-oriented coal gasification with CO2 capture
    Liszka, Marcin
    Malik, Tomasz
    Manfrida, Giampaolo
    ENERGY, 2012, 45 (01) : 142 - 150
  • [37] A study of CO2 capture in advanced IGCC systems by ammonia scrubbing
    Bonalumi, Davide
    Giuffrida, Antonio
    Lozza, Giovanni
    ATI 2013 - 68TH CONFERENCE OF THE ITALIAN THERMAL MACHINES ENGINEERING ASSOCIATION, 2014, 45 : 663 - 670
  • [38] Novel process design for waste energy recovery of LNG power plants for CO2 capture and storage
    Lim, Jonghun
    Kim, Yurim
    Cho, Hyungtae
    Lee, Jaewon
    Kim, Junghwan
    ENERGY CONVERSION AND MANAGEMENT, 2023, 277
  • [39] Energy and economic analysis of the CO2 capture from flue gas of combined cycle power plants
    Vaccarelli, Maura
    Carapellucci, Roberto
    Giordano, Lorena
    ATI 2013 - 68TH CONFERENCE OF THE ITALIAN THERMAL MACHINES ENGINEERING ASSOCIATION, 2014, 45 : 1165 - 1174
  • [40] CO2 Capture for Fossil Fuel-Fired Power Plants
    Notz, Ralf
    Toennies, Inga
    McCann, Nichola
    Scheffknecht, Guenter
    Hasse, Hans
    CHEMICAL ENGINEERING & TECHNOLOGY, 2011, 34 (02) : 163 - 172