Interior-point methods for nonconvex nonlinear programming: regularization and warmstarts

被引:39
作者
Benson, Hande Y. [1 ]
Shanno, David F. [2 ]
机构
[1] Drexel Univ, Philadelphia, PA 19104 USA
[2] Rutgers State Univ, RUTCOR, New Brunswick, NJ 08903 USA
基金
美国国家科学基金会;
关键词
interior-point methods; nonlinear programming; warmstarting; penalty methods;
D O I
10.1007/s10589-007-9089-x
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we investigate the use of an exact primal-dual penalty approach within the framework of an interior-point method for nonconvex nonlinear programming. This approach provides regularization and relaxation, which can aid in solving ill-behaved problems and in warmstarting the algorithm. We present details of our implementation within the LOQO algorithm and provide extensive numerical results on the CUTEr test set and on warmstarting in the context of quadratic, nonlinear, mixed integer nonlinear, and goal programming.
引用
收藏
页码:143 / 189
页数:47
相关论文
共 25 条
[1]  
Anitescu M., ANLMCSP7930200
[2]   Interior-point algorithms, penalty methods and equilibrium problems [J].
Benson, Hande Y. ;
Sen, Arun ;
Shanno, David F. ;
Vanderbei, Robert J. .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2006, 34 (02) :155-182
[3]   Interior-point methods for nonconvex nonlinear programming: Jamming and numerical testing [J].
Benson, HY ;
Shanno, DF ;
Vanderbei, RJ .
MATHEMATICAL PROGRAMMING, 2004, 99 (01) :35-48
[4]   Interior-point methods for nonconvex nonlinear programming: Filter methods and merit functions [J].
Benson, HY ;
Vanderbei, RJ ;
Shanno, DF .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2002, 23 (02) :257-272
[5]  
BENSON HY, NUMERICAL TESTING RE
[6]  
BENSON HY, 2001, P WORKSH HIGH PERF A
[7]  
BENSON HY, 2006, IN PRESS COMPUT OPTI
[8]   MINLPLib - A collection of test models for mixed-integer nonlinear programming [J].
Bussieck, MR ;
Drud, AS ;
Meeraus, A .
INFORMS JOURNAL ON COMPUTING, 2003, 15 (01) :114-119
[9]  
Fiacco A. V., 1990, Nonlinear Programming: Sequential Unconstrained Minimization Techniques
[10]  
Fletcher R., 1981, PRACTICAL METHODS OP