STABILITY AND INSTABILITY OF STANDING WAVES FOR GROSS-PITAEVSKII EQUATIONS WITH DOUBLE POWER NONLINEARITIES

被引:1
|
作者
Zhang, Yue [1 ]
Zhang, Jian [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Gross-Pitaevskii equations; double power nonlinearities; standing waves; instability; stability; SCALAR FIELD-EQUATIONS; CONCENTRATION-COMPACTNESS PRINCIPLE; SCHRODINGER-EQUATIONS; SOLITARY WAVES; ASYMPTOTIC-BEHAVIOR; POSITIVE SOLUTIONS; EXISTENCE; UNIQUENESS; CALCULUS; STATES;
D O I
10.3934/mcrf.2022007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate Gross-Pitaevskii equations with double power nonlinearities. Firstly, due to the defocusing effect from the lower power order nonlinearity, Gross-Pitaevskii equations still have standing waves when the frequency omega is the negative of the first eigenvalue of the linear operator -Delta + gamma vertical bar x vertical bar(2). The existence of this class of standing waves is proved by the variational method, especially the mountain pass lemma. Secondly, by establishing the relationship to the known standing waves of the classical nonlinear Schriidinger equations, we study the instability of standing waves for q >= 1 + 4/N and omega sufficiently large. Finally, we use the variational argument to prove the stability of standing waves for q <= 1 + 4/N.
引用
收藏
页码:533 / 553
页数:21
相关论文
共 50 条
  • [21] On nonlocal Gross-Pitaevskii equations with periodic potentials
    Curtis, Christopher W.
    JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (07)
  • [22] Travelling Waves for the Gross-Pitaevskii Equation II
    Bethuel, Fabrice
    Gravejat, Philippe
    Saut, Jean-Claude
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 285 (02) : 567 - 651
  • [23] Decay for travelling waves in the Gross-Pitaevskii equation
    Gravejat, P
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2004, 21 (05): : 591 - 637
  • [24] Vortices and sound waves for the Gross-Pitaevskii equation
    Bethuel, F
    Saut, JC
    NONLINEAR PDE'S IN CONDENSED MATTER AND REACTIVE FLOWS, 2002, 569 : 339 - 354
  • [25] Painleve test of coupled Gross-Pitaevskii equations
    Schumayer, D
    Apagyi, B
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (23): : 4969 - 4981
  • [26] OPTIMAL BILINEAR CONTROL OF GROSS-PITAEVSKII EQUATIONS
    Hintermueller, Michael
    Marahrens, Daniel
    Markowich, Peter A.
    Sparber, Christof
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2013, 51 (03) : 2509 - 2543
  • [27] Domain Walls in the Coupled Gross-Pitaevskii Equations
    Alama, Stan
    Bronsard, Lia
    Contreras, Andres
    Pelinovsky, Dmitry E.
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2015, 215 (02) : 579 - 610
  • [28] Instability of algebraic standing waves for nonlinear Schrodinger equations with triple power nonlinearities
    Tin, Phan Van
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2024, 69 (03) : 449 - 466
  • [29] Correction: On the Orbital Stability of Gross-Pitaevskii Solitons
    Xiuqing Duan
    Xiangrong Wang
    Journal of Nonlinear Mathematical Physics, 32 (1)
  • [30] Orbital stability of traveling waves for the one-dimensional Gross-Pitaevskii equation
    Gerard, Patrick
    Zhang, Zhifei
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2009, 91 (02): : 178 - 210