STABILITY AND INSTABILITY OF STANDING WAVES FOR GROSS-PITAEVSKII EQUATIONS WITH DOUBLE POWER NONLINEARITIES

被引:1
|
作者
Zhang, Yue [1 ]
Zhang, Jian [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Gross-Pitaevskii equations; double power nonlinearities; standing waves; instability; stability; SCALAR FIELD-EQUATIONS; CONCENTRATION-COMPACTNESS PRINCIPLE; SCHRODINGER-EQUATIONS; SOLITARY WAVES; ASYMPTOTIC-BEHAVIOR; POSITIVE SOLUTIONS; EXISTENCE; UNIQUENESS; CALCULUS; STATES;
D O I
10.3934/mcrf.2022007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate Gross-Pitaevskii equations with double power nonlinearities. Firstly, due to the defocusing effect from the lower power order nonlinearity, Gross-Pitaevskii equations still have standing waves when the frequency omega is the negative of the first eigenvalue of the linear operator -Delta + gamma vertical bar x vertical bar(2). The existence of this class of standing waves is proved by the variational method, especially the mountain pass lemma. Secondly, by establishing the relationship to the known standing waves of the classical nonlinear Schriidinger equations, we study the instability of standing waves for q >= 1 + 4/N and omega sufficiently large. Finally, we use the variational argument to prove the stability of standing waves for q <= 1 + 4/N.
引用
收藏
页码:533 / 553
页数:21
相关论文
共 50 条
  • [1] Instability of standing waves for the inhomogeneous Gross-Pitaevskii equation
    Wang, Yongbin
    Feng, Binhua
    AIMS MATHEMATICS, 2020, 5 (05): : 4596 - 4612
  • [2] Variational Approach to the Orbital Stability of Standing Waves of the Gross-Pitaevskii Equation
    Fouad Hadj Selem
    Hichem Hajaiej
    Peter A. Markowich
    Saber Trabelsi
    Milan Journal of Mathematics, 2014, 82 : 273 - 295
  • [3] Variational Approach to the Orbital Stability of Standing Waves of the Gross-Pitaevskii Equation
    Selem, Fouad Hadj
    Hajaiej, Hichem
    Markowich, Peter A.
    Trabelsi, Saber
    MILAN JOURNAL OF MATHEMATICS, 2014, 82 (02) : 273 - 295
  • [4] Existence and stability of standing waves for the inhomogeneous Gross-Pitaevskii equation with a partial confinement
    Liu, Jiayin
    He, Zhiqian
    Feng, Binhua
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 506 (01)
  • [5] Modulational instability for a cubic-quintic model of coupled Gross-Pitaevskii equations with residual nonlinearities
    Mboumba, Maik Delon
    Kamsap, Marius Romuald
    Moubissi, Alain Brice
    Ekogo, Thierry Blanchard
    Kofane, Timoleon Crepin
    PHYSICA SCRIPTA, 2024, 99 (12)
  • [6] INSTABILITY OF ALGEBRAIC STANDING WAVES FOR NONLINEAR SCHRODINGER EQUATIONS WITH DOUBLE POWER NONLINEARITIES
    Fukaya, Noriyoshi
    Hayashi, Masayuki
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 374 (02) : 1421 - 1447
  • [7] Stability analysis and continuation for the coupled Gross-Pitaevskii equations
    Sriburadet, Sirilak
    Shih, Yin-Tzer
    Chien, C. -S.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 78 (03) : 807 - 826
  • [8] Continuation and stability analysis for Bloch waves of the Gross-Pitaevskii equation
    Chen, H. -S.
    Chang, S. -L.
    Jeng, B. -W.
    Chien, C. -S.
    NUMERICAL ALGORITHMS, 2018, 77 (03) : 709 - 726
  • [9] Continuation and stability analysis for Bloch waves of the Gross-Pitaevskii equation
    H.-S. Chen
    S.-L. Chang
    B.-W. Jeng
    C.-S. Chien
    Numerical Algorithms, 2018, 77 : 709 - 726
  • [10] Stationary solutions of Gross-Pitaevskii equations in a double square well
    Li, WeiDong
    PHYSICAL REVIEW A, 2006, 74 (06):