Carbon Nanotube Sponges, Aerogels, and Hierarchical Composites: Synthesis, Properties, and Energy Applications

被引:125
作者
Lin, Zhiqiang [1 ]
Zeng, Zhiping [1 ]
Gui, Xuchun [1 ]
Tang, Zikang [1 ]
Zou, Mingchu [2 ]
Cao, Anyuan [2 ]
机构
[1] Sun Yat Sen Univ, Sch Elect & Informat Technol, State Key Lab Optoelect Mat & Technol, Guangzhou 510275, Guangdong, Peoples R China
[2] Peking Univ, Coll Engn, Dept Mat Sci & Engn, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
aerogels; carbon nanotubes; electrochemical energy storage; hierarchical composite; sponges; TEMPERATURE-INVARIANT VISCOELASTICITY; IN-SITU SYNTHESIS; MECHANICAL-PROPERTIES; SURFACE-AREA; AIR BATTERY; GRAPHENE; LITHIUM; PERFORMANCE; NETWORKS; DENSITY;
D O I
10.1002/aenm.201600554
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Carbon nanotube (CNT) aerogels and sponges are macroscopic porous materials with a unique isotropic structure. CNTs make an interconnected 3D scaffold, therefore the resulting aerogels are robust, highly conductive, and flexible, enabling a much broader range of applications than aligned arrays and thin films, especially in energy and environmental areas. A comprehensive overview of the recent progress in isotropic CNT-based macroscopic structures is provided, including their synthesis methods, structural characteristics, mechanical properties, and deformation mechanism, as well as potential applications in energy and environmental fields. In particular, this study focuses on the CNT sponges developed, which are high-performance porous materials with many distinct properties such as their versatile deformations and shape recovery. Importantly, the CNT sponges provide a universal platform for designing and manufacturing a variety of hierarchical functional composites by introducing polymers or inorganic guests, thus greatly extend application areas from highly compressible electrodes for supercapacitors and batteries, catalysis, to environmental cleanup. Future research directions and associated challenges in this field are proposed.
引用
收藏
页数:26
相关论文
共 176 条
[1]   Young modulus, mechanical and electrical properties of isolated individual and bundled single-walled boron nitride nanotubes [J].
Arenal, Raul ;
Wang, Ming-Sheng ;
Xu, Zhi ;
Loiseau, Annick ;
Golberg, Dmitri .
NANOTECHNOLOGY, 2011, 22 (26)
[2]   Manufacture, characterisation and application of cellular metals and metal foams [J].
Banhart, J .
PROGRESS IN MATERIALS SCIENCE, 2001, 46 (06) :559-U3
[3]   Adhesion and friction of a multiwalled carbon nanotube sliding against single-walled carbon nanotube [J].
Bhushan, Bharat ;
Ling, Xing ;
Jungen, Alain ;
Hierold, Christofer .
PHYSICAL REVIEW B, 2008, 77 (16)
[4]   New Graphene Form of Nanoporous Monolith for Excellent Energy Storage [J].
Bi, Hui ;
Lin, Tianquan ;
Xu, Feng ;
Tang, Yufeng ;
Liu, Zhanqiang ;
Huang, Fuqiang .
NANO LETTERS, 2016, 16 (01) :349-354
[5]   Advanced carbon aerogels for energy applications [J].
Biener, Juergen ;
Stadermann, Michael ;
Suss, Matthew ;
Worsley, Marcus A. ;
Biener, Monika M. ;
Rose, Klint A. ;
Baumann, Theodore F. .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (03) :656-667
[6]   New class of carbon-nanotube aerogel electrodes for electrochemical power sources [J].
Bordjiba, Tarik ;
Mohamedi, Mohamed ;
Dao, Le H. .
ADVANCED MATERIALS, 2008, 20 (04) :815-+
[7]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
[8]   Carbon nanotube aerogels [J].
Bryning, Mateusz B. ;
Milkie, Daniel E. ;
Islam, Mohammad F. ;
Hough, Lawrence A. ;
Kikkawa, James M. ;
Yodh, Arjun G. .
ADVANCED MATERIALS, 2007, 19 (05) :661-+
[9]   A three-dimensional carbon nanotube network for water treatment [J].
Camilli, L. ;
Pisani, C. ;
Gautron, E. ;
Scarselli, M. ;
Castrucci, P. ;
D'Orazio, F. ;
Passacantando, M. ;
Moscone, D. ;
De Crescenzi, M. .
NANOTECHNOLOGY, 2014, 25 (06)
[10]   Super-compressible foamlike carbon nanotube films [J].
Cao, AY ;
Dickrell, PL ;
Sawyer, WG ;
Ghasemi-Nejhad, MN ;
Ajayan, PM .
SCIENCE, 2005, 310 (5752) :1307-1310