A Block Hybrid Method for Non-linear Second Order Boundary Value Problems

被引:1
作者
Costabile, Francesco Aldo [1 ]
Caira, Rosanna [1 ]
Gualtieri, Maria Italia [1 ]
机构
[1] Univ Calabria, Dept Math & Comp Sci, I-87036 Rende Cs, Italy
关键词
Boundary value problem; difference method; sparse matrix; 65L10; 65L12; 65F50; EXPLICIT 2-STEP METHODS; COLLOCATION METHODS;
D O I
10.1007/s00009-018-1286-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a new method of hybrid type, for non-linear second order BVPs, to overcome some drawbacks of classic difference finite methods. An estimation of the local and global error is also given. Numerical tests on BVPs which is well known in the literature confirm the accuracy of the theoretical results.
引用
收藏
页数:18
相关论文
共 31 条
  • [1] High-order finite difference schemes for the solution of second-order BVPs
    Amodio, P
    Sgura, I
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 176 (01) : 59 - 76
  • [2] A finite differences MATLAB code for the numerical solution of second order singular perturbation problems
    Amodio, Pierluigi
    Settanni, Giuseppina
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2012, 236 (16) : 3869 - 3879
  • [3] [Anonymous], 1997, Numerical analysis of spectral meth- ods: Theory and applications
  • [4] Ascher U., 1995, Numerical solution of boundary value problems for ordinary differential equations
  • [5] Boyd J., 2001, Chebyshev and Fourier Spectral Methods, V2nd
  • [6] Butcher J.C., 1987, The numerical analysis of ordinary differential equations: Runge-Kutta and general linear methods
  • [7] Caira R, 1986, REND MAT, V6, P441
  • [8] Canuto C, 2007, Spectral Methods in Fluid Dynamics. Scientific Computation
  • [9] Algorithm 927: The MATLAB Code bvptwp.m for the Numerical Solution of Two Point Boundary Value Problems
    Cash, J. R.
    Hollevoet, D.
    Mazzia, F.
    Nagy, A. M.
    [J]. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2013, 39 (02):
  • [10] Chawla M. M., 1979, BIT (Nordisk Tidskrift for Informationsbehandling), V19, P27, DOI 10.1007/BF01931218