Four key challenges in infectious disease modelling using data from multiple sources

被引:46
|
作者
De Angelis, Daniela [1 ,2 ]
Presanis, Anne M. [1 ]
Birrell, Paul J. [1 ]
Tomba, Gianpaolo Scalia [3 ]
House, Thomas [4 ]
机构
[1] Cambridge Inst Publ Hlth, MRC, Biostat Unit, Cambridge CB2 OSR, England
[2] Publ Hlth England, London NW9 5HT, England
[3] Univ Roma Tor Vergata, Dept Math, Rome, Italy
[4] Univ Warwick, Warwick Math Inst, Coventry CV4 7AL, W Midlands, England
基金
英国医学研究理事会; 英国工程与自然科学研究理事会;
关键词
Evidence synthesis; Bayesian; Statistical inference; Multiple sources; Epidemics; Complex models; BAYESIAN COMPUTATION; A/H1N1; INFLUENZA; EPIDEMIC MODELS; MONTE-CARLO; DYNAMICS; ENGLAND; H1N1; INFERENCE; SEVERITY; HIV;
D O I
10.1016/j.epidem.2014.09.004
中图分类号
R51 [传染病];
学科分类号
100401 ;
摘要
Public health-related decision-making on policies aimed at controlling epidemics is increasingly evidence-based, exploiting multiple sources of data. Policy makers rely on complex models that are required to be robust, realistically approximating epidemics and consistent with all relevant data. Meeting these requirements in a statistically rigorous and defendable manner poses a number of challenging problems. How to weight evidence from different datasets and handle dependence between them, efficiently estimate and critically assess complex models are key challenges that we expound in this paper, using examples from influenza modelling. (C) 2014 The Authors. Published by Elsevier B.V.
引用
收藏
页码:83 / 87
页数:5
相关论文
共 50 条
  • [1] Approaches and challenges to inferring the geographical source of infectious disease outbreaks using genomic data
    Chen, Zhiyuan
    Lemey, Philippe
    Yu, Hongjie
    LANCET MICROBE, 2024, 5 (01): : e81 - e92
  • [2] Individual-Level Modelling of Infectious Disease Data: EpiILM
    Warriyar, Vineetha K. V.
    Almutiry, Waleed
    Deardon, Rob
    R JOURNAL, 2020, 12 (01): : 87 - 104
  • [3] Using Dynamic Stochastic Modelling to Estimate Population Risk Factors in Infectious Disease: The Example of FIV in 15 Cat Populations
    Fouchet, David
    Leblanc, Guillaume
    Sauvage, Frank
    Guiserix, Micheline
    Poulet, Herve
    Pontier, Dominique
    PLOS ONE, 2009, 4 (10):
  • [4] What's next: using infectious disease mathematical modelling to address health disparities
    Richard, Danielle M.
    Lipsitch, Marc
    INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2024, 53 (01)
  • [5] Bayesian Methods for Estimating Animal Abundance at Large Spatial Scales Using Data from Multiple Sources
    Dey, Soumen
    Delampady, Mohan
    Parameshwaran, Ravishankar
    Kumar, N. Samba
    Srivathsa, Arjun
    Karanth, K. Ullas
    JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2017, 22 (02) : 111 - 139
  • [6] Learning from multiple sources of inaccurate data
    Baliga, G
    Jain, S
    Sharma, A
    SIAM JOURNAL ON COMPUTING, 1997, 26 (04) : 961 - 990
  • [7] Modelling infectious disease transmission with complex exposure pattern and sparse outcome data
    Reilly, M
    Salim, A
    Lawlor, E
    Smith, O
    Temperley, I
    Pawitan, Y
    STATISTICS IN MEDICINE, 2004, 23 (19) : 3013 - 3032
  • [8] Estimating contact network properties by integrating multiple data sources associated with infectious diseases
    Goyal, Ravi
    Carnegie, Nicole
    Slipher, Sally
    Turk, Philip
    Little, Susan J.
    De Gruttola, Victor
    STATISTICS IN MEDICINE, 2023, 42 (20) : 3593 - 3615
  • [9] Using statistics and mathematical modelling to understand infectious disease outbreaks: COVID-19 as an example
    Overton, Christopher E.
    Stage, Helena B.
    Ahmad, Shazaad
    Curran-Sebastian, Jacob
    Dark, Paul
    Das, Rajenki
    Fearon, Elizabeth
    Felton, Timothy
    Fyles, Martyn
    Gent, Nick
    Hall, Ian
    House, Thomas
    Lewkowicz, Hugo
    Pang, Xiaoxi
    Pellis, Lorenzo
    Sawko, Robert
    Ustianowski, Andrew
    Vekaria, Bindu
    Webb, Luke
    INFECTIOUS DISEASE MODELLING, 2020, 5 : 409 - 441
  • [10] Predicting Infectious Disease Using Deep Learning and Big Data
    Chae, Sangwon
    Kwon, Sungjun
    Lee, Donghyun
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2018, 15 (08)