Learning Filters for the 2D Wavelet Transform

被引:5
|
作者
Recoskie, Daniel [1 ]
Mann, Richard [1 ]
机构
[1] Univ Waterloo, Cheriton Sch Comp Sci, Waterloo, ON, Canada
来源
2018 15TH CONFERENCE ON COMPUTER AND ROBOT VISION (CRV) | 2018年
基金
加拿大自然科学与工程研究理事会;
关键词
wavelets; convolution neural networks; filter banks;
D O I
10.1109/CRV.2018.00036
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We propose a new method for learning filters for the 2D discrete wavelet transform. We extend our previous work on the 1D wavelet transform in order to process images. We show that the 2D wavelet transform can be represented as a modified convolutional neural network (CNN). Doing so allows us to learn wavelet filters from data by gradient descent. Our learned wavelets are similar to traditional wavelets which are typically derived using Fourier methods. For filter comparison, we make use of a cosine measure under all filter rotations. The learned wavelets are able to capture the structure of the training data. Furthermore, we can generate images from our model in order to evaluate the filters. The main findings of this work is that wavelet functions can arise naturally from data, without the need for Fourier methods. Our model requires relatively few parameters compared to traditional CNNs, and is easily incorporated into neural network frameworks.
引用
收藏
页码:198 / 205
页数:8
相关论文
共 50 条
  • [1] 2D ORTHOGONAL SYMMETRIC WAVELET FILTERS USING ALLPASS FILTERS
    Zhang, Xi
    2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 5618 - 5621
  • [2] A run-time reconfigurable 2D discrete wavelet transform using JBits
    Ballagh, J
    Athanas, P
    Keller, E
    RECONFIGURABLE TECHNOLOGY: FPGAS AND RECONFIGURABLE PROCESSORS FOR COMPUTING AND COMMUNICATIONS III, 2001, 4525 : 116 - 124
  • [3] Filters and filter banks for periodic signals, the Zak transform, and fast wavelet decomposition
    Polyak, N
    Pearlman, WA
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1998, 46 (04) : 857 - 873
  • [4] On the Scalability of 2-D Discrete Wavelet Transform Algorithms
    José Fridman
    Elias S. Manolakos
    Multidimensional Systems and Signal Processing, 1997, 8 : 185 - 217
  • [5] 2D wavelet-based spectra with applications
    Nicolis, Orietta
    Ramirez-Cobo, Pepa
    Vidakovic, Brani
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2011, 55 (01) : 738 - 751
  • [6] On the scalability of 2-D discrete wavelet transform algorithms
    Fridman, J
    Manolakos, ES
    MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 1997, 8 (1-2) : 185 - 217
  • [7] A Unifying Parametric Framework for 2D Steerable Wavelet Transforms
    Unser, Michael
    Chenouard, Nicolas
    SIAM JOURNAL ON IMAGING SCIENCES, 2013, 6 (01): : 102 - 135
  • [8] 2D Anisotropic Wavelet Entropy with an Application to Earthquakes in Chile
    Nicolis, Orietta
    Mateu, Jorge
    ENTROPY, 2015, 17 (06) : 4155 - 4172
  • [9] Fusion of 2-D SIMS images using the wavelet transform
    Stubbings, TC
    Nikolov, SG
    Hutter, H
    MIKROCHIMICA ACTA, 2000, 133 (1-4) : 273 - 278
  • [10] Wavelet filtering to study mixing in 2D isotropic turbulence
    Beta, Carsten
    Schneider, Kai
    Farge, Marie
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2003, 8 (3-4) : 537 - 545