Low temperature behaviour of TiO2 rutile as negative electrode material for lithium-ion batteries

被引:65
作者
Marinaro, M. [1 ,2 ]
Pfanzelt, M. [1 ]
Kubiak, P. [1 ]
Marassi, R. [2 ]
Wohlfahrt-Mehrens, M. [1 ]
机构
[1] ZSW Zentrum Sonnenenergie & Wasserstoff Forsch, D-89081 Ulm, Germany
[2] Univ Camerino, Dept Chem Sci, I-62032 Camerino, Italy
关键词
Nanosized rutile TiO2; Lithium insertion; Low temperature performance; GRAPHITE; LI; DIFFUSION; ANODES; PERFORMANCE; CAPACITY;
D O I
10.1016/j.jpowsour.2011.07.008
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
High surface nanosized rutile TiO2 is prepared via a sol-gel method from an ethylene glycol-based titanium-precursor in the presence of a non-ionic surfactant, at pH 0. Its electrochemical behaviour has been investigated at low temperature using two different potential windows. Typically, the potential window of the rutile system is 1-3 V but the use of an enlarged potential window (0.1-3 V), leads to an excellent reversible capacity of 341 mAh g(-1) which is comparable to graphite anodes. The electrochemical performance was investigated by cyclic voltammetry and galvanostatic techniques at temperatures ranging from -40 to 20 degrees C. Nanosized TiO2 exhibits excellent rate capability (341 mAh g(-1) at 20 degrees C, 197 mAh g(-1) at -10 degrees C, 138 mAh g(-1) at -20 degrees C, and 77 mAh g(-1) at -40 degrees C at a C/5 rate) and good cycling stability. The superior low-temperature electrochemical performance of nanosized rutile TiO2 may make it a promising candidate as lithium-ion battery material. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:9825 / 9829
页数:5
相关论文
共 27 条
[1]   IR study of ozone modified graphite matrix [J].
Asrian, NA ;
Bondarenko, GN ;
Yemelianova, GI ;
Gorlenko, L ;
Adrov, OI ;
Marassi, R ;
Nalimova, VA ;
Sklovsky, DE .
MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 2000, 340 :331-336
[2]   Investigation of lithium diffusion in nano-sized rutile TiO2 by impedance spectroscopy [J].
Bach, S. ;
Pereira-Ramos, J. P. ;
Willman, P. .
ELECTROCHIMICA ACTA, 2010, 55 (17) :4952-4959
[3]   Structural evolution during the reaction of Li with nano-sized rutile type TiO2 at room temperature [J].
Baudrin, E. ;
Cassaignon, S. ;
Koesch, M. ;
Jolivet, J. -P. ;
Dupont, L. ;
Tarascon, J. -M. .
ELECTROCHEMISTRY COMMUNICATIONS, 2007, 9 (02) :337-342
[4]   The effects of oxidation on the surface properties of MCMB-6-28 [J].
Cao, XY ;
Kim, JH ;
Oh, SM .
ELECTROCHIMICA ACTA, 2002, 47 (25) :4085-4089
[5]   The superior lithium storage capabilities of ultra-fine rutile TiO2 nanoparticles [J].
Chen, Jun Song ;
Lou, Xiong Wen .
JOURNAL OF POWER SOURCES, 2010, 195 (09) :2905-2908
[6]   Lithium diffusion in rutile structured titania [J].
Gligor, F. ;
de Leeuw, S. W. .
SOLID STATE IONICS, 2006, 177 (26-32) :2741-2746
[7]   High lithium electroactivity of nanometer-sized rutile TiO2 [J].
Hu, Yong-Sheng ;
Kienle, Lorenz ;
Guo, Yu- Guo ;
Maier, Joachim .
ADVANCED MATERIALS, 2006, 18 (11) :1421-+
[8]   The limits of low-temperature performance of Li-ion cells [J].
Huang, CK ;
Sakamoto, JS ;
Wolfenstine, J ;
Surampudi, S .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2000, 147 (08) :2893-2896
[9]   1-DIMENSIONAL DIFFUSION OF LI IN RUTILE [J].
JOHNSON, OW .
PHYSICAL REVIEW A-GENERAL PHYSICS, 1964, 136 (1A) :A284-&
[10]   Density-functional simulations of lithium intercalation in rutile [J].
Koudriachova, MV ;
Harrison, NM ;
de Leeuw, SW .
PHYSICAL REVIEW B, 2002, 65 (23) :2354231-23542312