Automated technique for carotid plaque characterisation and classification using RDWT in ultrasound images

被引:2
|
作者
Mailerum Perumal, Arun [1 ]
Balaji, G. N. [2 ]
Dhiviya Rose, J. [3 ]
Kulkarni, Asha [4 ]
Shajin, Francis H. [5 ]
机构
[1] Vel Tech Rangarajan Dr Sagunthala R&D Inst Sci &, Dept Comp Sci & Engn, Chennai, Tamil Nadu, India
[2] SRM TRP Engn Coll, Dept Comp Sci & Engn, Trichy, India
[3] Univ Petr & Energy Studies UPES, Energy Acres, Dept Cybernet, Sch Comp Sci, Dehra Dun 248007, Uttarakhand, India
[4] JSS Polytech, Head Dept, Elect & Commun Engn Dept, Mysore, Karnataka, India
[5] Anna Univ, Dept Elect & Commun Engn, Chennai, Tamil Nadu, India
关键词
Rational-dilation wavelet transform (RDWT); plaque characterisation; classification; Salp Swarm Algorithm (SSA); ATHEROSCLEROTIC PLAQUE; DISEASE CLASSIFICATION; HEART-DISEASE; CORONARY; SEGMENTATION; ALGORITHM; FRAMEWORK; RISK;
D O I
10.1080/21681163.2021.2004444
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In this manuscript, a novel method of rational-dilation wavelet transform (RDWT) is proposed for carotid plaque characterisation and classification in Ultrasound images. RDWT is mainly utilised for image acquisition, pre-processing, feature extraction and ensemble classification in automated plaque classification. Here, the transition bands are constructed from the transition function. The statistical features, viz mean, standard deviation, skewness, Renyi entropy, energy are extracted from the sub-bands of RDWT. The Salp Swarm Algorithm (SSA) is mainly used for selecting the optimum features. In this for selecting optimum features using SSA algorithm two conditions are satisfied such as, in the first approach, mean, standard deviation, skewness are selected and then utilised for converting the continual version of salp swarm algorithm to binary. Subsequently, the crossover operator is utilised to select the Renyi entropy, energy features including transfer functions for replacing the average operator and enhancing the characteristics of research method. Plaque Classification uses K Nearest Neighbour (KNN), Probabilistic Neural Network (PNN) and Support Vector Machine (SVM) classifiers. Experimental outcomes show the efficiency of the proposed method depending on accuracy, specificity and sensitivity. The proposed method attains accuracy of 93%, sensitivity of 90% and specificity of 94% when likened to the existing techniques, such as KNN, PNN and SVM.
引用
收藏
页码:187 / 199
页数:13
相关论文
共 50 条
  • [21] Classification Approach for Measurement of Atherosclerosis Using B-Mode Ultrasound Carotid Images
    Carvalho, Catarina
    Rocha, Rui
    Campilho, Aurelio
    IMAGE ANALYSIS AND RECOGNITION, 2013, 7950 : 539 - 546
  • [22] Automated plaque characterization using deep learning on coronary intravascular optical coherence tomographic images
    Lee, Juhwan
    Prabhu, David
    Kolluru, Chaitanya
    Gharaibeh, Yazan
    Zimin, Vladislav N.
    Bezerra, Hiram G.
    Wilson, David L.
    BIOMEDICAL OPTICS EXPRESS, 2019, 10 (12): : 6497 - 6515
  • [23] FULLY AUTOMATED CAROTID PLAQUE SEGMENTATION IN COMBINED CONTRAST-ENHANCED AND B-MODE ULTRASOUND
    Akkus, Zeynettin
    Carvalho, Diego D. B.
    van den Oord, Stijn C. H.
    Schinkel, Arend F. L.
    Niessen, Wiro J.
    de Jong, Nico
    van der Steen, Antonius F. W.
    Klein, Stefan
    Bosch, Johan G.
    ULTRASOUND IN MEDICINE AND BIOLOGY, 2015, 41 (02) : 517 - 531
  • [24] Automated Classification of Coronary Plaque on Intravascular Ultrasound by Deep Classifier Cascades
    Yang, Jing
    Li, Xinze
    Guo, Yunbo
    Song, Peng
    Lv, Tiantian
    Zhang, Yingmei
    Cui, Yaoyao
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2024, 71 (11) : 1440 - 1450
  • [25] Texture Analysis in Ultrasound Images of Carotid Plaque Components of Asymptomatic and Symptomatic Subjects
    Loizou, Christos P.
    Pantziaris, Marios
    Theofilou, Marilena
    Kasparis, Takis
    Kyriakou, Efthivoulos
    ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS, AIAI 2013, 2013, 412 : 282 - 291
  • [26] FULLY AUTOMATIC PLAQUE SEGMENTATION IN 3-D CAROTID ULTRASOUND IMAGES
    Cheng, Jieyu
    Li, He
    Xiao, Feng
    Fenster, Aaron
    Zhang, Xuming
    He, Xiaoling
    Li, Ling
    Ding, Mingyue
    ULTRASOUND IN MEDICINE AND BIOLOGY, 2013, 39 (12) : 2431 - 2446
  • [27] DEEP LEARNING-BASED CAROTID PLAQUE SEGMENTATION FROM B-MODE ULTRASOUND IMAGES
    Zhou, Ran
    Azarpazhooh, M. Reza
    Spence, J. David
    Hashemi, Samineh
    Ma, Wei
    Cheng, Xinyao
    Gan, Haitao
    Ding, Mingyue
    Fenster, Aaron
    ULTRASOUND IN MEDICINE AND BIOLOGY, 2021, 47 (09) : 2723 - 2733
  • [28] Segmentation of the Common Carotid Intima-Media Complex in Ultrasound Images Using Active Contours
    Petroudi, Styliani
    Loizou, Christos
    Pantziaris, Marios
    Pattichis, Constantinos
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2012, 59 (11) : 3060 - 3069
  • [29] A self-supervised fusion network for carotid plaque ultrasound image classification
    Zhang Y.
    Gan H.
    Wang F.
    Cheng X.
    Wu X.
    Yan J.
    Yang Z.
    Zhou R.
    Mathematical Biosciences and Engineering, 2024, 21 (02) : 3110 - 3128
  • [30] Stratification of carotid atheromatous plaque using interpretable deep learning methods on B-mode ultrasound images
    Ganitidis, Theofanis
    Athanasiou, Maria
    Dalakleidi, Kalliopi
    Melanitis, Nikos
    Golemati, Spyretta
    Nikita, Konstantina S.
    2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC), 2021, : 3902 - 3905