A TG-FTIR investigation on the co-pyrolysis of the waste HDPE, PP, PS and PET under high heating conditions

被引:155
|
作者
Singh, R. K. [1 ]
Ruj, B. [2 ]
Sadhukhan, A. K. [1 ]
Gupta, P. [1 ]
机构
[1] Natl Inst Technol, Dept Chem Engn, Durgapur 713209, W Bengal, India
[2] CSIR Cent Mech Engn Res Inst, Environm Engn Grp, Durgapur 713209, W Bengal, India
关键词
Polymeric waste; Thermoset plastics; Degradation; Co-pyrolysis; TG-FTIR; THERMAL-DEGRADATION; SOLID-WASTE; CARBONYL-COMPOUNDS; BOTTLED WATERS; PLASTIC WASTE; FUEL; POLYETHYLENE; TEMPERATURE; POLYPROPYLENE; ATMOSPHERE;
D O I
10.1016/j.joei.2019.09.003
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The present study relates to the investigation of degradation of polymers such as HDPE, PP, PS and PET individually and in mixed forms. Eleven different mixture combinations were analyzed via TG Analysis to determine their degradation behavior individually and in mixed forms. FTIR analysis of the raw polymers was performed to investigate the presence of different functional groups in the sample. Online TG-FTIR analysis was performed to investigate the functional groups present in the volatiles fractions during single component pyrolysis and the interaction of polymers during co-pyrolysis was analyzed, compared and reported. Also, a real-world post consumer mixed waste was also analyzed and compared. During the co-pyrolysis of HDPE with PP and PS, the degradation of PP was delayed whereas PS reduced the degradation temperature of HDPE. In the case of degradation of PS with PP and PET, the increase in degradation temperature was reported whereas, in the case of PET and HDPE mixture, the degradation temperature of HDPE was reduced. During the interaction of PP and PET mixed degradation, PET degradation temperature was delayed. During the FTIR analysis a large amount of alkanes, alkenes, aromatics groups were observed during the degradation of HDPE, PP and PS whereas in case of PET the presence of oxygenated groups is observed. During the mixed degradation, the presence of PET in the sample caused the formation of oxygenated groups by reducing the absorption intensity of other groups or by disappearing the groups. Compounds such as benzoic acid, CO and CO2 was detected during the degradation of PET whereas in other polymers a large amount of methane or methylene group is observed. Overall during the degradation of mixed polymer mixture presence of PET played a vital role in the formation of light gas fractions. Even though a numerous investigation on co-pyrolysis of polymers were available, there is still not sufficient information of interaction of polymers with each other, especially with PET. This article attempts to fill this gap. (C) 2019 Published by Elsevier Ltd on behalf of Energy Institute.
引用
收藏
页码:1020 / 1035
页数:16
相关论文
共 48 条
  • [1] A TG-FTIR investigation to the co-pyrolysis of oil shale with coal
    Li, Shuangshuang
    Ma, Xiaoqian
    Liu, Guicai
    Guo, Mingxuan
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2016, 120 : 540 - 548
  • [2] TG-FTIR study on co-pyrolysis of municipal solid waste with biomass
    Ren, Qiangqiang
    Zhao, Changsui
    Wu, Xin
    Liang, Cai
    Chen, Xiaoping
    Shen, Jiezhong
    Tang, Guoyong
    Wang, Zheng
    BIORESOURCE TECHNOLOGY, 2009, 100 (17) : 4054 - 4057
  • [3] Investigation on the co-pyrolysis of agricultural waste and high-density polyethylene using TG-FTIR and artificial neural network modelling
    Li, Jishuo
    Yao, Xiwen
    Chen, Shoukun
    Xu, Kaili
    Fan, Bingjie
    Yang, Dexin
    Geng, Liyan
    Qiao, Haiming
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2022, 160 : 341 - 353
  • [4] TG/FTIR analysis on co-pyrolysis behavior of PE, PVC and PS
    Wu, Jingli
    Chen, Tianju
    Luo, Xitao
    Han, Dezhi
    Wang, Zhiqi
    Wu, Jinhu
    WASTE MANAGEMENT, 2014, 34 (03) : 676 - 682
  • [5] Thermal degradation of typical plastics under high heating rate conditions by TG-FTIR: Pyrolysis behaviors and kinetic analysis
    Xu, Fanfan
    Wang, Bo
    Yang, Dan
    Hao, Junhui
    Qiao, Yingyun
    Tian, Yuanyu
    ENERGY CONVERSION AND MANAGEMENT, 2018, 171 : 1106 - 1115
  • [6] Investigation of co-pyrolysis characteristics and kinetics of municipal solid waste and paper sludge through TG-FTIR and DAEM
    Fang, Shiwen
    Lin, Yan
    Huang, Zhen
    Huang, Hongyu
    Chen, Shu
    Ding, Lixing
    THERMOCHIMICA ACTA, 2021, 700
  • [7] Co-pyrolysis characters between combustible solid waste and paper mill sludge by TG-FTIR and Py-GC/MS
    Fang, Shiwen
    Yu, Zhaosheng
    Ma, Xiaoqian
    Lin, Yan
    Lin, Yousheng
    Chen, Lin
    Fan, Yunlong
    Liao, Yanfen
    ENERGY CONVERSION AND MANAGEMENT, 2017, 144 : 114 - 122
  • [8] Co-pyrolysis between microalgae and textile dyeing sludge by TG-FTIR: Kinetics and products
    Peng, Xiaowei
    Ma, Xiaoqian
    Lin, Yousheng
    Guo, Zhenge
    Hu, Shanchao
    Ning, Xingxing
    Cao, Yawen
    Zhang, Yaowei
    ENERGY CONVERSION AND MANAGEMENT, 2015, 100 : 391 - 402
  • [9] Thermal behavior and gas evolution characteristics during co-pyrolysis of lignocellulosic biomass and coal: A TG-FTIR investigation
    Lin, Bowen
    Zhou, Jingsong
    Qin, Qianwen
    Song, Xin
    Luo, Zhongyang
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2019, 144
  • [10] Comparative investigation between co-pyrolysis characteristics of protein and carbohydrate by TG-FTIR and Py-GC/MSN
    Wei, Xiaoyu
    Ma, Xiaoqian
    Peng, Xiaowei
    Yao, Zhongliang
    Yang, Fan
    Dai, Minquan
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2018, 135 : 209 - 218