Schizandrin A protects against cerebral ischemia-reperfusion injury by suppressing inflammation and oxidative stress and regulating the AMPK/Nrf2 pathway regulation

被引:24
|
作者
Zhou, Feng [1 ,2 ]
Wang, Maode [1 ]
Ju, Jing [4 ]
Wang, Yuan [6 ]
Liu, Zhibin [6 ]
Zhao, Xiaoping [2 ]
Yan, Yongmei [3 ]
Yan, Shuguang [7 ]
Luo, Xiaozhong [5 ]
Fang, Yongjun [2 ]
机构
[1] Xi An Jiao Tong Univ, Dept Neurosurg, Affiliated Hosp 1, Xian 710061, Shaanxi, Peoples R China
[2] Shaanxi Univ Chinese Med, Affiliated Hosp, Dept Neurosurg, Xianyang 712020, Shaanxi, Peoples R China
[3] Shaanxi Univ Chinese Med, Affiliated Hosp, Dept Cerebropathy, Xianyang 712020, Shaanxi, Peoples R China
[4] Xianyang IRICO Hosp, Operat Room, Xianyang 712000, Shaanxi, Peoples R China
[5] Xianyang IRICO Hosp, Dept Adm, Xianyang 712000, Shaanxi, Peoples R China
[6] Shaanxi Univ Chinese Med, Combinat Acupuncture & Med Innovat Res Ctr, Xianyang 712046, Shaanxi, Peoples R China
[7] Shaanxi Univ Chinese Med, Coll Basic Med, Xianyang 712046, Shaanxi, Peoples R China
来源
AMERICAN JOURNAL OF TRANSLATIONAL RESEARCH | 2019年 / 11卷 / 01期
基金
美国国家科学基金会;
关键词
Schizandrin A; inflammation; oxidative stress; AMPK/Nrf2; pathway; ARTERY OCCLUSION; EXPRESSION; KINASE; CELLS;
D O I
暂无
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Inflammation and oxidative stress are considered major factors in the pathogenesis of ischemic stroke. Increasing evidence has demonstrated that Schizandrin A (Sch A), a lignin compound isolated from Schisandra chinesnesis, exhibits prominent anti-inflammatory and antioxidant activities. In this study, we investigated the antiinflammatory and antioxidant effects of Sch A against cerebral ischemia/reperfusion (I/R) injury as well as the underlying molecular mechanisms. Sch A treatment significantly improved the neurological score and reduced infarct volume 24 h after reperfusion. It dose-dependently inhibited the expression of cyclooxygenase-2 and inducible nitric oxide synthase, reduced the release of pro-inflammatory cytokines (tumor necrosis factor-alpha interleukin [IL]-1 beta and IL-6), and increased anti-inflammatory cytokines (transforming growth factor-beta and interleukin-10). Furthermore, it increased the activity of superoxide dismutase and catalase, decreased reactive oxygen species production and 4-hydroxynonenal and 8-hydroxy-2'-deoxyguanosine levels. Transcription of nuclear factor erythroid 2-related factor 2 (Nrf2) and downstream genes (heme oxygenase-1 and NAD[P]H: quinone oxidoreductase 1) increased. Knockdown of Nrf2 by siRNA inhibited the neuroprotective effects of Sch A. In addition, Sch A increased phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) both in vivo and in vitro. Activation of the Nrf2 pathway as well as the protective effects of Sch A in an oxygen and glucose deprivation-induced injury model was abolished by AMPK knockdown. Our study indicates that Sch A protects against cerebral I/R injury by suppressing inflammation and oxidative stress, and that this effect is regulated by the AMPK/Nrf2 pathway.
引用
收藏
页码:199 / 209
页数:11
相关论文
共 50 条
  • [21] Salvianolic Acid A Protects Against Oxidative Stress and Apoptosis Induced by Intestinal Ischemia-Reperfusion Injury Through Activation of Nrf2/HO-1 Pathways
    Zu, Guo
    Zhou, Tingting
    Che, Ningwei
    Zhang, Xiangwen
    CELLULAR PHYSIOLOGY AND BIOCHEMISTRY, 2018, 49 (06) : 2320 - 2332
  • [22] Remimazolam Suppresses Oxidative Stress and Apoptosis in Cerebral Ischemia/Reperfusion Injury by Regulating AKT/GSK-3(3/NRF2 Pathway
    Duan, Mei
    Yu, Ning
    Liu, Jia
    Zhao, Yang
    Zhang, Jing
    Song, Siyi
    Wang, Shilei
    DRUG DESIGN DEVELOPMENT AND THERAPY, 2025, 19 : 111 - 128
  • [23] Fortunellin protects against high fructose-induced diabetic heart injury in mice by suppressing inflammation and oxidative stress via AMPK/Nrf-2 pathway regulation
    Zhao, Cuihua
    Zhang, Yuan
    Liu, Hongyang
    Li, Peng
    Zhang, Han
    Cheng, Guanchang
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2017, 490 (02) : 552 - 559
  • [24] Genipin protects against cerebral ischemia-reperfusion injury by regulating the UCP2-SIRT3 signaling pathway
    Zhao, Busi
    Sun, Lian-kun
    Jiang, Xianrui
    Zhang, Yong
    Kang, Jinsong
    Meng, Hao
    Li, Hongyan
    Su, Jing
    EUROPEAN JOURNAL OF PHARMACOLOGY, 2019, 845 : 56 - 64
  • [25] The Role of Nrf2 in Relieving Cerebral Ischemia-Reperfusion Injury
    Sun, Yu
    Yang, Xu
    Xu, Lijun
    Jia, Mengxiao
    Zhang, Limeng
    Li, Peng
    Yang, Pengfei
    CURRENT NEUROPHARMACOLOGY, 2023, 21 (06) : 1405 - 1420
  • [26] Ruscogenin timing administration mitigates cerebral ischemia-reperfusion injury through regulating circadian genes and activating Nrf2 pathway
    Zhang, Sanli
    Yu, Yan
    Sheng, Mingyue
    Chen, Xun
    Wu, Qi
    Kou, Junping
    Chen, Gangling
    PHYTOMEDICINE, 2023, 120
  • [27] Britanin Ameliorates Cerebral Ischemia-Reperfusion Injury by Inducing the Nrf2 Protective Pathway
    Wu, Guozhen
    Zhu, Lili
    Yuan, Xing
    Chen, Hao
    Xiong, Rui
    Zhang, Shoude
    Cheng, Hao
    Shen, Yunheng
    An, Huazhang
    Li, Tiejun
    Li, Honglin
    Zhang, Weidong
    ANTIOXIDANTS & REDOX SIGNALING, 2017, 27 (11) : 754 - 768
  • [28] Basic fibroblast growth factor protects against liver ischemia-reperfusion injury via the Nrf2/Hippo signaling pathway
    Chen, Xixi
    Tong, Gaozan
    Chen, Saizhen
    TISSUE & CELL, 2022, 79
  • [29] Gastrodin Pretreatment Protects Liver Against Ischemia-Reperfusion Injury via Activation of the Nrf2/HO-1 Pathway
    Yuan, Bo
    Huang, Hanfei
    Qu, Siming
    Zhang, Hongbin
    Lin, Jie
    Jin, Li
    Yang, Shikun
    Zeng, Zhong
    AMERICAN JOURNAL OF CHINESE MEDICINE, 2020, 48 (05): : 1159 - 1178
  • [30] Sufentanil Preconditioning Protects Against Hepatic Ischemia-Reperfusion Injury by Suppressing Inflammation
    Lian, Yan-hong
    Fang, Jun
    Zhou, Hui-dan
    Jiang, Hui-fang
    Xie, Kang-jie
    MEDICAL SCIENCE MONITOR, 2019, 25 : 2265 - 2273