Perfusion Parameter Obtained on 3-Tesla Magnetic Resonance Imaging and the Ki-67 Labeling Index Predict the Overall Survival of Glioblastoma

被引:3
|
作者
Fudaba, Hirotaka [1 ]
Momii, Yasutomo [1 ]
Matsuta, Hiroyuki [1 ]
Onishi, Kouhei [1 ]
Kawasaki, Yukari [1 ]
Sugita, Kenji [1 ]
Shimomura, Tsuyoshi [2 ]
Fujiki, Minoru [1 ]
机构
[1] Oita Univ, Fac Med, Dept Neurosurg, Oita, Japan
[2] Oita Univ, Fac Med, Dept Med Informat, Oita, Japan
基金
日本学术振兴会;
关键词
Cerebral blood flow; Glioblastoma; Ki-67 labeling index; Magnetic resonance imaging; Perfusion-weighted imaging; Pulsed arterial spin-labeling; Survival; GLIOMAS; TEMOZOLOMIDE; PROGRESSION; DIFFUSION; EXTENT;
D O I
10.1016/j.wneu.2021.02.002
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
BACKGROUND: Pulsed arterial spin-labeling, diffusion tensor imaging (DTI), and magnetic resonance spectroscopy (MRS) are useful for predicting glioma survival. We performed a comparative review of multiple parameters obtained using these pulse sequences on 3-Tesla magnetic resonance imaging (MRI) including the molecular status and Ki-67 labeling index in newly diagnosed supratentorial glioblastomas. METHODS: A total of 35 patients with glioblastomas underwent pulsed arterial spin-labeling, DTI, and MRS studies using 3-Tesla MRI preoperatively. The isocitrate dehydrogenase (IDH) mutation status, methylguanine-DNA methyltransferase methylation status, and Ki-67 labeling index were calculated from the tumor specimen. Cutoff values were identified by analyzing a receiver operating characteristic curve, and the multivariate survival statistical technique was performed to determine the significant and independent parameters for predicting overall survival. RESULTS: The multivariate Cox analysis showed that the maximum/mean relative cerebral blood flow (rCBF) ratio and the Ki-67 labeling index were significant and independent predictive parameters with a cutoff value of 1.589 for the maximum rCBF ratio, 1.286 for the mean rCBF ratio, and 19% for the Ki-67 labeling index and hazard ratios of 6.132 and 5.119, respectively. The Kaplan-Meier survival curves showed that patients with higher rCBF ratios and Ki-67 labeling indices had a shorter overall survival than others, with median overall survival durations of 479 (95% CI, 370-559) and 1243 (95% CI, 666-NA) days, respectively (P = 0.000167). CONCLUSIONS: Our findings indicate that the preoperative rCBF ratio and Ki-67 labeling index are useful parameters for predicting the overall survival of cerebral glioblastomas.
引用
收藏
页码:E469 / E480
页数:12
相关论文
共 9 条
  • [1] Perfusion Parameter Obtained on 3-Tesla Magnetic Resonance Imaging and the Ki-67 Labeling Index Predict the Overall Survival of Glioblastoma
    Fudaba, Hirotaka
    Momii, Yasutomo
    Matsuta, Hiroyuki
    Onishi, Kouhei
    Kawasaki, Yukari
    Sugita, Kenji
    Shimomura, Tsuyoshi
    Fujiki, Minoru
    WORLD NEUROSURGERY, 2021, 149 : E469 - E480
  • [2] The role of 3-Tesla magnetic resonance perfusion and spectroscopy in distinguishing glioblastoma from solitary brain metastasis
    Hung, Nguyen Duy
    Van Dung, Le
    Vi, Nguyen Ha
    Anh, Nguyen-Thi Hai
    Phuong, Le-Thi Hong
    Hieu, Nguyen Dinh
    Duc, Nguyen Minh
    JOURNAL OF CLINICAL IMAGING SCIENCE, 2023, 13
  • [3] Ki-67 labeling index and the grading of cerebral gliomas by using intravoxel incoherent motion diffusion-weighted imaging and three-dimensional arterial spin labeling magnetic resonance imaging
    Wang, Chaochao
    Dong, Haibo
    ACTA RADIOLOGICA, 2020, 61 (08) : 1057 - 1063
  • [4] Low expression of Ki-67/MIB-1 labeling index in IDH wild type glioblastoma predicts prolonged survival independently by MGMT methylation status
    Tini, Paolo
    Yavoroska, Mariya
    Mazzei, Maria Antonietta
    Miracco, Clelia
    Pirtoli, Luigi
    Tomaciello, Miriam
    Marampon, Francesco
    Minniti, Giuseppe
    JOURNAL OF NEURO-ONCOLOGY, 2023, 163 (02) : 339 - 344
  • [5] Low expression of Ki-67/MIB-1 labeling index in IDH wild type glioblastoma predicts prolonged survival independently by MGMT methylation status
    Paolo Tini
    Mariya Yavoroska
    Maria Antonietta Mazzei
    Clelia Miracco
    Luigi Pirtoli
    Miriam Tomaciello
    Francesco Marampon
    Giuseppe Minniti
    Journal of Neuro-Oncology, 2023, 163 : 339 - 344
  • [6] Machine Learning Using Multiparametric Magnetic Resonance Imaging Radiomic Feature Analysis to Predict Ki-67 in World Health Organization Grade I Meningiomas
    Khanna, Omaditya
    Kazerooni, Anahita Fathi
    Farrell, Christopher J.
    Baldassari, Michael P.
    Alexander, Tyler D.
    Karsy, Michael
    Greenberger, Benjamin A.
    Garcia, Jose A.
    Sako, Chiharu
    Evans, James J.
    Judy, Kevin D.
    Andrews, David W.
    Flanders, Adam E.
    Sharan, Ashwini D.
    Dicker, Adam P.
    Shi, Wenyin
    Davatzikos, Christos
    NEUROSURGERY, 2021, 89 (05) : 928 - 936
  • [7] Diffusion Magnetic Resonance Imaging Phenotypes Predict Overall Survival Benefit From Bevacizumab or Surgery in Recurrent Glioblastoma With Large Tumor Burden
    Patel, Kunal S.
    Everson, Richard G.
    Yao, Jingwen
    Raymond, Catalina
    Goldman, Jodi
    Schlossman, Jacob
    Tsung, Joseph
    Tan, Caleb
    Pope, Whitney B.
    Ji, Matthew S.
    Nguyen, Nhung T.
    Lai, Albert
    Nghiemphu, Phioanh L.
    Liau, Linda M.
    Cloughesy, Timothy F.
    Ellingson, Benjamin M.
    NEUROSURGERY, 2020, 87 (05) : 931 - 938
  • [8] Magnetic resonance imaging in categorization of ovarian epithelial cancer and survival analysis with focus on apparent diffusion coefficient value: correlation with Ki-67 expression and serum cancer antigen-125 level
    Guofu Zhang
    Weigen Yao
    Taotao Sun
    Xuefen Liu
    Peng Zhang
    Jun Jin
    Yu Bai
    Keqin Hua
    He Zhang
    Journal of Ovarian Research, 12
  • [9] Magnetic resonance imaging in categorization of ovarian epithelial cancer and survival analysis with focus on apparent diffusion coefficient value: correlation with Ki-67 expression and serum cancer antigen-125 level
    Zhang, Guofu
    Yao, Weigen
    Sun, Taotao
    Liu, Xuefen
    Zhang, Peng
    Jin, Jun
    Bai, Yu
    Hua, Keqin
    Zhang, He
    JOURNAL OF OVARIAN RESEARCH, 2019, 12 (1)