Critical point and phase behavior of the pure fluid and a Lennard-Jones mixture

被引:334
作者
Potoff, JJ
Panagiotopoulos, AZ [1 ]
机构
[1] Univ Maryland, Inst Phys Sci & Technol, College Pk, MD 20742 USA
[2] Univ Maryland, Dept Chem Engn, College Pk, MD 20742 USA
关键词
D O I
10.1063/1.477787
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Monte Carlo simulations in the grand canonical ensemble were used to obtain liquid-vapor coexistence curves and critical points of the pure fluid and a binary mixture of Lennard-Jones particles. Critical parameters were obtained from mixed-field finite-size scaling analysis and subcritical coexistence data from histogram reweighting methods. The critical parameters of the untruncated Lennard-Jones potential were obtained as T-c* = 1.3120 +/- 0.0007, rho(c)* = 0.316 +/- 0.001 and p(c)* = 0.1279 +/- 0.0006. Our results for the critical temperature and pressure are not in agreement with the recent study of Caillol [J. Chem. Phys. 109, 4885 (1998)] on a four-dimensional hypersphere. Mixture parameters were epsilon(1) = 2 epsilon(2) and sigma(1) = sigma(2), with Lorentz-Berthelot combining rules for the unlike-pair interactions. We determined the critical point at T*=1.0 and pressure-composition diagrams at three temperatures. Our results have much smaller statistical uncertainties relative to comparable Gibbs ensemble simulations. (C) 1998 American Institute of Physics. [S0021-9606(98)51248-2].
引用
收藏
页码:10914 / 10920
页数:7
相关论文
共 30 条