Modeling of thermal coupling in VO2-based oscillatory neural networks

被引:17
作者
Velichko, Andrey [1 ]
Belyaev, Maksim [1 ]
Putrolaynen, Vadim [1 ]
Perminov, Valentin [1 ]
Pergament, Alexander [1 ]
机构
[1] Petrozavodsk State Univ, Petrozavodsk 185910, Russia
基金
俄罗斯科学基金会;
关键词
Vanadium dioxide; Electrical switching; Oscillator; Oscillatory neural networks; Thermal coupling;
D O I
10.1016/j.sse.2017.09.014
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this study, we have demonstrated the possibility of using the thermal coupling to control the dynamics of operation of coupled VO2 oscillators. Based on the example of a 'switch-microheater' pair, we have explored the synchronization and dissynchronization modes of a single oscillator with respect to an external harmonic heat impact. The features of changes in the spectra are shown, in particular, the effect of the natural frequency attraction to the affecting signal frequency and the self-oscillation noise reduction effects at synchronization. The time constant of the temperature effect for the considered system configuration is in the range 7-140 mu s, which allows operation in the oscillation frequency range of up to similar to 70 kHz. A model estimate of the minimum temperature sensitivity of the switch is delta T-switch similar to 0.2 K, and the effective action radius R-TC of the switch-to-switch thermal coupling is not less than 25 mu m. Nevertheless, as the simulation shows, the frequency range can be significantly extended up to the values of 1-30 GHz if using nanometer-scale switches (heaters).
引用
收藏
页码:8 / 14
页数:7
相关论文
共 24 条
  • [1] Belyaev M, 2017, PHYS STATUS SOLIDI C, V14, DOI 10.1002/pssc.201600236
  • [2] Oscillatory neural network model of attention focus formation and control
    Borisyuk, RM
    Kazanovich, YB
    [J]. BIOSYSTEMS, 2003, 71 (1-2) : 29 - 38
  • [3] Weak synchronization and large-scale collective oscillation in dense bacterial suspensions
    Chen, Chong
    Liu, Song
    Shi, Xia-qing
    Chate, Hugues
    Wu, Yilin
    [J]. NATURE, 2017, 542 (7640) : 210 - 214
  • [4] Freeman E, 2012, 70 DEV RES C U PARK
  • [5] Direct and parametric synchronization of a graphene self-oscillator
    Houri, S.
    Cartamil-Bueno, S. J.
    Poot, M.
    Steeneken, P. G.
    van der Zant, H. S. J.
    Venstra, W. J.
    [J]. APPLIED PHYSICS LETTERS, 2017, 110 (07)
  • [6] Oscillatory neural networks for robotic yo-yo control
    Jin, HL
    Zacksenhouse, M
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2003, 14 (02): : 317 - 325
  • [7] Kuono T, 1982, ELECTRON COMM JPN 1, V65, P29
  • [8] High-speed metal-insulator transition in vanadium dioxide films induced by an electrical pulsed voltage over nano-gap electrodes
    Leroy, J.
    Crunteanu, A.
    Bessaudou, A.
    Cosset, F.
    Champeaux, C.
    Orlianges, J. -C.
    [J]. APPLIED PHYSICS LETTERS, 2012, 100 (21)
  • [9] Li M., 2016, IEEE INFOCOM SER, P1
  • [10] The 2016 oxide electronic materials and oxide interfaces roadmap
    Lorenz, M.
    Rao, M. S. Ramachandra
    Venkatesan, T.
    Fortunato, E.
    Barquinha, P.
    Branquinho, R.
    Salgueiro, D.
    Martins, R.
    Carlos, E.
    Liu, A.
    Shan, F. K.
    Grundmann, M.
    Boschker, H.
    Mukherjee, J.
    Priyadarshini, M.
    DasGupta, N.
    Rogers, D. J.
    Teherani, F. H.
    Sandana, E. V.
    Bove, P.
    Rietwyk, K.
    Zaban, A.
    Veziridis, A.
    Weidenkaff, A.
    Muralidhar, M.
    Murakami, M.
    Abel, S.
    Fompeyrine, J.
    Zuniga-Perez, J.
    Ramesh, R.
    Spaldin, N. A.
    Ostanin, S.
    Borisov, V.
    Mertig, I.
    Lazenka, V.
    Srinivasan, G.
    Prellier, W.
    Uchida, M.
    Kawasaki, M.
    Pentcheva, R.
    Gegenwart, P.
    Granozio, F. Miletto
    Fontcuberta, J.
    Pryds, N.
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2016, 49 (43)