Non-fullerene acceptor IDIC based on indacinodithiophene used as an electron donor for organic solar cells: A computational study

被引:16
作者
Nebbach, Diae [1 ]
Agda, Fatima [1 ]
Kaya, Savas [2 ]
Siddique, Farhan [2 ]
Lakhlifi, Tahar [1 ]
Ajana, Mohammed Aziz [1 ]
Bouachrine, Mohammed [1 ]
机构
[1] Mouly Ismail Univ, Fac Sci, Dept Chem Mol & Computat Chem, Mol Chem & Nat Subst Lab, Meknes 50070, Morocco
[2] Sivas Cumhuriyet Univ, Hlth Serv Vocat Sch, Dept Pharm, TR-58140 Sivas, Turkey
关键词
IDIC; Organic solar cell; DFT; Transition density matrix; Open-circuit voltage; TD-DFT; OPEN-CIRCUIT VOLTAGE; ABSOLUTE HARDNESS; SMALL-MOLECULE; NOBEL LECTURE; POLYMER; EFFICIENT; OPTIMIZATION; PERFORMANCE; COPOLYMERS; RATIO;
D O I
10.1016/j.molliq.2021.118289
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In the present paper, a computational study was performed on a planar non-fullerene acceptor (A-D-A) type based on indacenodithiophene (noted IDIC) which is widely used in the fabrication of organic solar cells. The structural and optoelectronic properties were studied using the Density Functional Theory (DFT) and Time-Dependent DFT (TD-DFT) approaches with different functionals, such as B3LYP, B3PW91, MPW1PW91. The optoelectronic properties such as HOMO and LUMO energy levels, energy gap, lambda(max) were determined and compared with experimental results reported. Charge transfer properties were further characterized through Frontier Molecular Orbitals (FMOs) and Density of States (DOS). Transition density matrix (TDM) and hole&electron isosurface were used to illustrate the behavior of electronic excitation processes as well as the position of electron holes between the donor and acceptor units. In addition, the IDIC compound was tested as an electron donor with the fullerenes and their derivatives as electron acceptors (PCBM). Both electrochemical and photovoltaic properties were investigated and discussed in detailed. The theoretical results indicated that the B3LYP/6-31G(d,p) and its time-dependent counterpart TD-B3LYP/6-31G(d,p) methods are appropriate to predict the optoelectronic properties. The values of the open-circuit voltage (Voc) of IDIC with used acceptors range from 1.165 to 1.665 V. The results of this study showed the high potential of the IDIC compound for integratation into solar cells as an electron donor material and suggested the usefulness of studied materials as promising candidates for photovoltaics. (C) 2021 Published by Elsevier B.V.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] High-Performance Non-Fullerene Polymer Solar Cells Based on a Pair of Donor-Acceptor Materials with Complementary Absorption Properties
    Lin, Haoran
    Chen, Shangshang
    Li, Zhengke
    Lai, Joshua Yuk Lin
    Yang, Guofang
    McAfee, Terry
    Jiang, Kui
    Li, Yunke
    Liu, Yuhang
    Hu, Huawei
    Zhao, Jingbo
    Ma, Wei
    Ade, Harald
    Yan, He
    ADVANCED MATERIALS, 2015, 27 (45) : 7299 - +
  • [42] Efficient Organic Solar Cells with Non-Fullerene Acceptors
    Li, Shuixing
    Liu, Wenqing
    Li, Chang-Zhi
    Shi, Minmin
    Chen, Hongzheng
    SMALL, 2017, 13 (37)
  • [43] Non-Fullerene Polymer Solar Cells Based on a New Polythiophene Derivative as Donor
    Xu Qingqing
    Chang Chunmei
    Li Wanbin
    Guo Bing
    Guo Xia
    Zhang Maojie
    ACTA PHYSICO-CHIMICA SINICA, 2019, 35 (03) : 268 - 274
  • [44] Modulation of the power conversion efficiency of organic solar cells via architectural variation of a promising non-fullerene acceptor
    Mishra, Ruchika
    Regar, Ramprasad
    Singh, Varun
    Panini, Piyush
    Singhal, Rahul
    Keshtov, M. L.
    Sharma, Ganesh D.
    Sankar, Jeyaraman
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (02) : 574 - 582
  • [45] A Three-Dimensional Non-Fullerene Acceptor with Contorted Hexabenzocoronene and Perylenediimide for Organic Solar Cells
    Zhu, Xin
    Yang, Lei
    Pan, Yangyang
    Yang, Yuqin
    Ding, Xuming
    Wan, Chuanming
    Zhang, Zhuo
    Luo, Yun
    Zhou, Qinghai
    Wang, Liwei
    Xiao, Shengxiong
    CHEMISTRY-A EUROPEAN JOURNAL, 2024, 30 (17)
  • [46] A new non-fullerene acceptor based on an asymmetric electron-deficient core for indoor organic photovoltaic cells
    He, Yinghui
    Alem, Salima
    Lu, Jianping
    Yee, Nathan
    Tao, Ye
    MATERIALS CHEMISTRY AND PHYSICS, 2023, 306
  • [47] Strategies to Enhance the Stability of Non-Fullerene Acceptor-Based Organic Solar Cells
    Choppella, Sairathna
    Haseena, Sheik
    Ravva, Mahesh Kumar
    ADVANCED THEORY AND SIMULATIONS, 2024,
  • [48] Star-Shaped Electron Acceptor based on Naphthalenediimide-Porphyrin for Non-Fullerene Organic Solar Cells
    Zhou shichao
    Feng Guitao
    Xia Dongdong
    Li Cheng
    Wu Yonggang
    Li Weiwei
    ACTA PHYSICO-CHIMICA SINICA, 2018, 34 (04) : 344 - 347
  • [49] Simple and Versatile Non-Fullerene Acceptor Based on Benzothiadiazole and Rhodanine for Organic Solar Cells
    Ahn, Jongho
    Oh, Sora
    Lee, HyunKyung
    Lee, Sangjun
    Song, Chang Eun
    Lee, Hang Ken
    Lee, Sang Kyu
    So, Won-Wook
    Moon, Sang-Jin
    Lim, Eunhee
    Shin, Won Suk
    Lee, Jong-Cheol
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (33) : 30098 - 30107
  • [50] Designing and comparative analysis of 3D subphthalocyanines based non-fullerene acceptor molecules as an efficient material for organic solar cells
    Yaqoob, Umer
    Rafiq, Sidra
    Rehman, Shafiq Ur
    Bibi, Shamsa
    Iqbal, Javed
    OPTIK, 2021, 246 (246):