A Framework for Crop Disease Detection Using Feature Fusion Method

被引:7
|
作者
Bhagwat, Radhika [1 ,2 ]
Dandawate, Yogesh [3 ]
机构
[1] Savitribai Phule Pune Univ, Dept Technol, Pune, Maharashtra, India
[2] Cummins Coll Engn Women, Dept Informat Technol, Pune, Maharashtra, India
[3] Vishwaskarma Inst Informat Technol, Elect & Telecommun Engn, Pune, Maharashtra, India
关键词
crop disease detection; feature fusion; convolutional neural network; hand-crafted features; cepstral coefficients; NEURAL-NETWORK; LEAF DISEASES; IDENTIFICATION; CLASSIFICATION; AGRICULTURE; RECOGNITION;
D O I
10.46604/ijeti.2021.7346
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Crop disease detection methods vary from traditional machine learning, which uses Hand-Crafted Features (HCF) to the current deep learning techniques that utilize deep features. In this study, a hybrid framework is designed for crop disease detection using feature fusion. Convolutional Neural Network (CNN) is used for high level features that are fused with HCF. Cepstral coefficients of RGB images are presented as one of the features along with the other popular HCF. The proposed hybrid model is tested on the whole leaf images and also on the image patches which have individual lesions. The experimental results give an enhanced performance with a classification accuracy of 99.93% for the whole leaf images and 99.74% for the images with individual lesions. The proposed model also shows a significant improvement in comparison to the state-of-art techniques. The improved results show the prominence of feature fusion and establish cepstral coefficients as a pertinent feature for crop disease detection.
引用
收藏
页码:216 / 228
页数:13
相关论文
共 50 条
  • [21] An infrared small target detection method using coordinate attention and feature fusion
    Shi, Qi
    Zhang, Congxuan
    Chen, Zhen
    Lu, Feng
    Ge, Liyue
    Wei, Shuigen
    INFRARED PHYSICS & TECHNOLOGY, 2023, 131
  • [22] An infrared target intrusion detection method based on feature fusion and enhancement
    Xiaodong Hu
    Xinqing Wang
    Xin Yang
    Dong Wang
    Pong Zhang
    Yi Xiao
    Defence Technology, 2020, 16 (03) : 737 - 746
  • [23] Leaf image based plant disease identification using transfer learning and feature fusion
    Fan, Xijian
    Luo, Peng
    Mu, Yuen
    Zhou, Rui
    Tjahjadi, Tardi
    Ren, Yi
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2022, 196
  • [24] Wafer defect recognition method based on multi-scale feature fusion
    Chen, Yu
    Zhao, Meng
    Xu, Zhenyu
    Li, Kaiyue
    Ji, Jing
    FRONTIERS IN NEUROSCIENCE, 2023, 17
  • [25] A Single Shot Framework with Multi-Scale Feature Fusion for Geospatial Object Detection
    Zhuang, Shuo
    Wang, Ping
    Jiang, Boran
    Wang, Gang
    Wang, Cong
    REMOTE SENSING, 2019, 11 (05)
  • [26] COVID-19 detection on chest radiographs using feature fusion based deep learning
    Fatih Bayram
    Alaa Eleyan
    Signal, Image and Video Processing, 2022, 16 : 1455 - 1462
  • [27] An optimized machine learning framework for crop disease detection
    Srinivas, L. N. B.
    Bharathy, A. M. Viswa
    Ramakuri, Sravanth Kumar
    Sethy, Abhisek
    Kumar, Ravi
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (1) : 1539 - 1558
  • [28] COVID-19 detection on chest radiographs using feature fusion based deep learning
    Bayram, Fatih
    Eleyan, Alaa
    SIGNAL IMAGE AND VIDEO PROCESSING, 2022, 16 (06) : 1455 - 1462
  • [29] An optimized machine learning framework for crop disease detection
    L. N. B. Srinivas
    A. M. Viswa Bharathy
    Sravanth Kumar Ramakuri
    Abhisek Sethy
    Ravi Kumar
    Multimedia Tools and Applications, 2024, 83 : 1539 - 1558
  • [30] A DEEP FEATURE FUSION METHOD FOR ANDROID MALWARE DETECTION
    Ding, Yuxin
    Hu, Jieke
    Xu, Wenting
    Zhang, Xiao
    PROCEEDINGS OF 2019 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC), 2019, : 547 - 552