Effect of hydrothermal synthesis conditions on up-conversion luminescence intensity of β-NaYF4: Er3+, Yb3+ submicron particles

被引:6
作者
Sagaidachnaya, E. A. [1 ]
Konyukhova, Ju G. [1 ]
Kazadaeva, N., I [1 ]
Doronkina, A. A. [1 ]
Yanina, I. Yu [1 ,2 ]
Skaptsov, A. A. [1 ]
Pravdin, A. B. [1 ]
Kochubey, V., I [1 ,2 ]
机构
[1] Saratov NG Chernyshevskii State Univ, Ul Astrakhanskaya 83, Saratov 410012, Russia
[2] Natl Res Tomsk State Univ, Prosp Lenina 36, Tomsk 634050, Russia
基金
俄罗斯科学基金会;
关键词
up-conversion particles; luminescence spectra; Raman scattering; NANOPARTICLES; NANOCRYSTALS; NAYF4YB3+; MECHANISM;
D O I
10.1070/QEL17205
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The differences in the luminescence intensities of up-conversion beta-NaYF4:Er3+, Yb3+ particles synthesised by the hydrothermal method under various synthesis conditions are studied. The results of the study lead to the conclusion that in order to achieve the maximum luminescence intensity in such particles, it is necessary to use ammonium fluoride and a medium with pH = 3. In this case, the length of the particles increases, up to the formation of rod-shaped particles. Based on the data on the size of the coherent scattering region and on microstresses, we can assume that the particles are polycrystals. At the same time, limiting the size of the coherent scattering region is possible due to the defective structure. When the nanoparticles are synthesised in a medium with pH = 3, hydrolysed regions containing Oil groups are formed on the crystallite surface. The presence of these groups does not affect the intensity of up-conversion luminescence of submicron-size particles.
引用
收藏
页码:109 / 113
页数:5
相关论文
共 33 条
[1]  
Altavilla C., 2016, NANOMATERIALS THEIR
[2]   Rare Earth Ion-Doped Upconversion Nanocrystals: Synthesis and Surface Modification [J].
Chang, Hongjin ;
Xie, Juan ;
Zhao, Baozhou ;
Liu, Botong ;
Xu, Shuilin ;
Ren, Na ;
Xie, Xiaoji ;
Huang, Ling ;
Huang, Wei .
NANOMATERIALS, 2015, 5 (01) :1-25
[3]   Upconversion Nanoparticles: Design, Nanochemistry, and Applications in Theranostics [J].
Chen, Guanying ;
Qju, Hailong ;
Prasad, Paras N. ;
Chen, Xiaoyuan .
CHEMICAL REVIEWS, 2014, 114 (10) :5161-5214
[4]   Upconversion Nanomaterials: Synthesis, Mechanism, and Applications in Sensing [J].
Chen, Jiao ;
Zhao, Julia Xiaojun .
SENSORS, 2012, 12 (03) :2414-2435
[5]   Lanthanide upconversion nanoparticles and applications in bioassays and bioimaging: A review [J].
DaCosta, Matthew V. ;
Doughan, Samer ;
Han, Yi ;
Krull, Ulrich J. .
ANALYTICA CHIMICA ACTA, 2014, 832 :1-33
[6]   Upconversion nanoparticles for in vivo applications: limitations and future perspectives [J].
del Rosal, Blanca ;
Jaque, Daniel .
METHODS AND APPLICATIONS IN FLUORESCENCE, 2019, 7 (02)
[7]   Controlled synthesis of β-NaYF4:Yb3+/Er3+ microstructures with morphology- and size-dependent upconversion luminescence [J].
Ding, Mingye ;
Yin, Shilong ;
Ni, Yaru ;
Lu, Chunhua ;
Chen, Daqin ;
Zhong, Jiasong ;
Ji, Zhenguo ;
Xu, Zhongzi .
CERAMICS INTERNATIONAL, 2015, 41 (06) :7411-7420
[8]  
Du Y., 2012, THESIS
[9]   Lanthanide luminescence for functional materials and bio-sciences [J].
Eliseeva, Svetlana V. ;
Buenzli, Jean-Claude G. .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (01) :189-227
[10]   Exploiting lanthanide-doped upconversion nanoparticles with core/shell structures [J].
Fan, Yong ;
Liu, Lu ;
Zhang, Fan .
NANO TODAY, 2019, 25 :68-84