An MCMC Algorithm for Parameter Estimation in Signals with Hidden Intermittent Instability
被引:18
作者:
Chen, Nan
论文数: 0引用数: 0
h-index: 0
机构:
NYU, Dept Math, 550 1St Ave, New York, NY 10012 USA
NYU, Courant Inst Math Sci, Ctr Atmosphere Ocean Sci, New York, NY 10012 USANYU, Dept Math, 550 1St Ave, New York, NY 10012 USA
Chen, Nan
[1
,2
]
Giannakis, Dimitrios
论文数: 0引用数: 0
h-index: 0
机构:
NYU, Dept Math, 550 1St Ave, New York, NY 10012 USA
NYU, Courant Inst Math Sci, Ctr Atmosphere Ocean Sci, New York, NY 10012 USANYU, Dept Math, 550 1St Ave, New York, NY 10012 USA
Giannakis, Dimitrios
[1
,2
]
Herbei, Radu
论文数: 0引用数: 0
h-index: 0
机构:
Ohio State Univ, Dept Stat, Columbus, OH 43210 USANYU, Dept Math, 550 1St Ave, New York, NY 10012 USA
Herbei, Radu
[3
]
Majda, Andrew J.
论文数: 0引用数: 0
h-index: 0
机构:
NYU, Dept Math, 550 1St Ave, New York, NY 10012 USA
NYU, Courant Inst Math Sci, Ctr Atmosphere Ocean Sci, New York, NY 10012 USANYU, Dept Math, 550 1St Ave, New York, NY 10012 USA
Majda, Andrew J.
[1
,2
]
机构:
[1] NYU, Dept Math, 550 1St Ave, New York, NY 10012 USA
[2] NYU, Courant Inst Math Sci, Ctr Atmosphere Ocean Sci, New York, NY 10012 USA
[3] Ohio State Univ, Dept Stat, Columbus, OH 43210 USA
Prediction of extreme events is a highly important and challenging problem in science, engineering, finance, and many other areas. The observed extreme events in these areas are often associated with complex nonlinear dynamics with intermittent instability. However, due to lack of resolution or incomplete knowledge of the dynamics of nature, these instabilities are typically hidden. To describe nature with hidden instability, a stochastic parameterized model is used as the low-order reduced model. Bayesian inference incorporating data augmentation, regarding the missing path of the hidden processes as the augmented variables, is adopted in a Markov chain Monte Carlo (MCMC) algorithm to estimate the parameters in this reduced model from the partially observed signal. Howerver, direct application of this algorithm leads to an extremely low acceptance rate of the missing path. To overcome this shortcoming, an efficient MCMC algorithm which includes a pre-estimation of hidden processes is developed. This algorithm greatly increases the acceptance rate and provides the low-order reduced model with a high skill in capturing the extreme events due to intermittency.
引用
收藏
页码:647 / 669
页数:23
相关论文
共 39 条
[1]
[Anonymous], 2009, FAO FISH AQUAC TECH
[2]
[Anonymous], 2013, Inference for Diffusion Processes: With Applications in Life Sciences
机构:
NYU, Courant Inst Math Sci, Dept Math, New York, NY USA
NYU, Courant Inst Math Sci, Ctr Atmosphere Ocean Sci, New York, NY USANYU, Courant Inst Math Sci, Dept Math, New York, NY USA
Branicki, Michal
Chen, Nan
论文数: 0引用数: 0
h-index: 0
机构:
NYU, Courant Inst Math Sci, Dept Math, New York, NY USA
NYU, Courant Inst Math Sci, Ctr Atmosphere Ocean Sci, New York, NY USANYU, Courant Inst Math Sci, Dept Math, New York, NY USA
Chen, Nan
Majda, Andrew J.
论文数: 0引用数: 0
h-index: 0
机构:
NYU, Courant Inst Math Sci, Dept Math, New York, NY USA
NYU, Courant Inst Math Sci, Ctr Atmosphere Ocean Sci, New York, NY USANYU, Courant Inst Math Sci, Dept Math, New York, NY USA
机构:
NYU, Courant Inst Math Sci, Dept Math, New York, NY USA
NYU, Courant Inst Math Sci, Ctr Atmosphere Ocean Sci, New York, NY USANYU, Courant Inst Math Sci, Dept Math, New York, NY USA
Branicki, Michal
Chen, Nan
论文数: 0引用数: 0
h-index: 0
机构:
NYU, Courant Inst Math Sci, Dept Math, New York, NY USA
NYU, Courant Inst Math Sci, Ctr Atmosphere Ocean Sci, New York, NY USANYU, Courant Inst Math Sci, Dept Math, New York, NY USA
Chen, Nan
Majda, Andrew J.
论文数: 0引用数: 0
h-index: 0
机构:
NYU, Courant Inst Math Sci, Dept Math, New York, NY USA
NYU, Courant Inst Math Sci, Ctr Atmosphere Ocean Sci, New York, NY USANYU, Courant Inst Math Sci, Dept Math, New York, NY USA