Hopf-zero bifurcation of Oregonator oscillator with delay

被引:1
作者
Cai, Yuting [1 ]
Liu, Liqin [1 ]
Zhang, Chunrui [1 ]
机构
[1] Northeast Forestry Univ, Dept Math, Harbin, Heilongjiang, Peoples R China
来源
ADVANCES IN DIFFERENCE EQUATIONS | 2018年
关键词
Oregonator model; Delay; Hopf-zero bifurcation; Normal form; DIFFERENTIAL-EQUATIONS; MODEL; SYSTEM;
D O I
10.1186/s13662-018-1894-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the Hopf-zero bifurcation of Oregonator oscillator with delay. The interaction coefficient and time delay are taken as two bifurcation parameters. Firstly, we get the normal form by performing a center manifold reduction and using the normal form theory developed by Faria and Magalhes. Secondly, we obtain a critical value to predict the bifurcation diagrams and phase portraits. Under some conditions, saddle-node bifurcation and pitchfork bifurcation occur along M and N, respectively; Hopf bifurcation and heteroclinic bifurcation occur along H and S, respectively. Finally, we use numerical simulations to support theoretical analysis.
引用
收藏
页数:21
相关论文
共 29 条
  • [1] [Anonymous], 2004, ELEMENTS APPL BIFURC
  • [2] Hopf Bifurcation and Delay-Induced Turing Instability in a Diffusive lac Operon Model
    Cao, Xin
    Song, Yongli
    Zhang, Tonghua
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2016, 26 (10):
  • [3] Hopf bifurcation and optimal control in a diffusive predator-prey system with time delay and prey harvesting
    Chang, Xiaoyuan
    Wei, Junjie
    [J]. NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2012, 17 (04): : 379 - 409
  • [4] Chow S.-N., 1994, NORMAL FORMS BIFURCA
  • [5] Hopf bifurcation in a love-triangle model with time delays
    Deng, Wei
    Liao, Xiaofeng
    Dong, Tao
    Zhou, Bo
    [J]. NEUROCOMPUTING, 2017, 260 : 13 - 24
  • [6] Hopf-zero bifurcation in a generalized Gopalsamy neural network model
    Ding, Yuting
    Jiang, Weihua
    Yu, Pei
    [J]. NONLINEAR DYNAMICS, 2012, 70 (02) : 1037 - 1050
  • [7] Zero-Hopf bifurcation in a Chua system
    Euzebio, Rodrigo D.
    Llibre, Jaume
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2017, 37 : 31 - 40
  • [8] NORMAL FORMS FOR RETARDED FUNCTIONAL-DIFFERENTIAL EQUATIONS WITH PARAMETERS AND APPLICATIONS TO HOPF-BIFURCATION
    FARIA, T
    MAGALHAES, LT
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 122 (02) : 181 - 200
  • [9] On the periodic orbit bifurcating from a zero Hopf bifurcation in systems with two slow and one fast variables
    Garcia, Isaac A.
    Llibre, Jaume
    Maza, Susanna
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2014, 232 : 84 - 90
  • [10] Bifurcation Control and Universal Unfolding for Hopf-Zero Singularities with Leading Solenoidal Terms
    Gazor, Majid
    Sadri, Nasrin
    [J]. SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2016, 15 (02): : 870 - 903