Optimal ternary linear rate 1/2 codes

被引:1
|
作者
Gulliver, TA [1 ]
Senkevitch, N [1 ]
机构
[1] Univ Canterbury, Dept Elect & Elect Engn, Christchurch 1, New Zealand
关键词
optimal linear codes; codes over F3;
D O I
10.1023/A:1011260531721
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we classify all optimal linear [n, n/2] codes up to length 12. We show that there is a unique optimal [10, 5, 5] code up to equivalence.
引用
收藏
页码:167 / 171
页数:5
相关论文
共 50 条
  • [41] Optimal Ternary Cyclic Codes From Monomials
    Ding, Cunsheng
    Helleseth, Tor
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (09) : 5898 - 5904
  • [42] Further results on optimal ternary cyclic codes
    Zha, Zhengbang
    Hu, Lei
    Liu, Yan
    Cao, Xiwang
    FINITE FIELDS AND THEIR APPLICATIONS, 2021, 75
  • [43] Linear-time encodable/decodable codes with near-optimal rate
    Guruswami, V
    Indyk, P
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (10) : 3393 - 3400
  • [44] Optimal ternary quasi-cyclic codes
    Greenough, P.P.
    Hill, R.
    Designs, Codes and Cryptography, 1992, 2 (01)
  • [45] On a class of optimal constant weight ternary codes
    Hadi Kharaghani
    Sho Suda
    Vlad Zaitsev
    Designs, Codes and Cryptography, 2023, 91 : 45 - 54
  • [46] A New Family of Optimal Ternary Cyclic Codes
    Ma, Shuxia
    Zhang, Hongling
    Jin, Weidong
    Niu, Xianhua
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2014, E97A (02) : 690 - 693
  • [47] On a class of optimal constant weight ternary codes
    Kharaghani, Hadi
    Suda, Sho
    Zaitsev, Vlad
    DESIGNS CODES AND CRYPTOGRAPHY, 2023, 91 (01) : 45 - 54
  • [48] Some improvements to the extendability of ternary linear codes
    Maruta, Tatsuya
    Okamoto, Kei
    FINITE FIELDS AND THEIR APPLICATIONS, 2007, 13 (02) : 259 - 280
  • [49] On Computation of Minimum Distance of Linear Block Codes Above 1/2 Rate Coding
    Bhattar, Raghunadh K.
    Ramakrishnan, K. R.
    Dasgupta, K. S.
    2010 IEEE INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS, NETWORKING AND INFORMATION SECURITY (WCNIS), VOL 2, 2010, : 280 - +
  • [50] Geometric conditions for the extendability of ternary linear codes
    Maruta, Tatsuya
    Okamoto, Kei
    CODING AND CRYPTOGRAPHY, 2006, 3969 : 85 - 99