Optimal ternary linear rate 1/2 codes

被引:1
|
作者
Gulliver, TA [1 ]
Senkevitch, N [1 ]
机构
[1] Univ Canterbury, Dept Elect & Elect Engn, Christchurch 1, New Zealand
关键词
optimal linear codes; codes over F3;
D O I
10.1023/A:1011260531721
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we classify all optimal linear [n, n/2] codes up to length 12. We show that there is a unique optimal [10, 5, 5] code up to equivalence.
引用
收藏
页码:167 / 171
页数:5
相关论文
共 50 条
  • [1] Optimal Ternary Linear Rate 1/2 Codes
    T. Aaron Gulliver
    Nikolai Senkevitch
    Designs, Codes and Cryptography, 2001, 23 : 167 - 172
  • [2] Optimal and isodual ternary cyclic codes of rate 1/2
    Mihoubi, Cherif
    Sole, Patrick
    BULLETIN OF MATHEMATICAL SCIENCES, 2012, 2 (02) : 343 - 357
  • [3] Binary optimal linear rate 1/2 codes
    Gulliver, TA
    Östergård, PRJ
    DISCRETE MATHEMATICS, 2004, 283 (1-3) : 255 - 261
  • [4] Binary optimal linear rate 1/2 codes
    Betsumiya, K
    Gulliver, TA
    Harada, M
    APPLIED ALGEBRA, ALGEBRAIC ALGORITHMS AND ERROR-CORRECTING CODES, PROCEEDINGS, 1999, 1719 : 462 - 471
  • [5] NEW OPTIMAL TERNARY LINEAR CODES
    GULLIVER, TA
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1995, 41 (04) : 1182 - 1185
  • [6] A Conjecture on Optimal Ternary Linear Codes
    Kawabata, Daiki
    Maruta, Tatsuya
    PROCEEDINGS OF THE 2020 SEVENTEENTH INTERNATIONAL WORKSHOP ON ALGEBRAIC AND COMBINATORIAL CODING THEORY ALGEBRAIC AND COMBINATORIAL CODING THEORY (ACCT 2020): PROCEEDINGS OF THE SEVENTEENTH INTERNATIONAL WORKSHOP ON ALGEBRAIC AND COMBINATORIAL CODING THEORY ACCT 2020, 2020, : 90 - 94
  • [7] ON OPTIMAL TERNARY LINEAR CODES OF DIMENSION 6
    Maruta, Tatsuya
    Oya, Yusuke
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2011, 5 (03) : 505 - 520
  • [8] Locality of Some Optimal Ternary Linear Codes
    Yang, Ruipan
    Li, Ruihu
    Guo, Luobin
    Fu, Qiang
    Rao, Yi
    ADVANCES IN INFORMATION AND COMMUNICATION TECHNOLOGY, 2017, 107 : 164 - 169
  • [9] Some New Optimal Ternary Linear Codes
    Boukliev I.
    Designs, Codes and Cryptography, 1997, 12 (1) : 5 - 11
  • [10] 5 NEW OPTIMAL TERNARY LINEAR CODES
    VANEUPEN, M
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1994, 40 (01) : 193 - 193