Operando detection of single nanoparticle activity dynamics inside a model pore catalyst material

被引:16
作者
Albinsson, David [1 ]
Bartling, Stephan [1 ]
Nilsson, Sara [1 ]
Strom, Henrik [2 ,3 ]
Fritzsche, Joachim [1 ]
Langhammer, Christoph [1 ]
机构
[1] Chalmers Univ Technol, Dept Phys, SE-41296 Gothenburg, Sweden
[2] Chalmers Univ Technol, Dept Mech & Maritime Sci, SE-41296 Gothenburg, Sweden
[3] Norwegian Univ Sci & Technol NTNU, Dept Energy & Proc Engn, Trondheim, Norway
基金
欧洲研究理事会;
关键词
WATER-GAS SHIFT; OSCILLATORY BEHAVIOR; HYDRIDE FORMATION; OXIDATION; COPPER; HYDROGEN; SCIENCE; SPECTROSCOPY; PALLADIUM; TIME;
D O I
10.1126/sciadv.aba7678
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Nanoconfinement in porous catalysts may induce reactant concentration gradients inside the pores due to local conversion. This leads to inefficient active material use since parts of the catalyst may be trapped in an inactive state. Experimentally, these effects remain unstudied due to material complexity and required high spatial resolution. Here, we have nanofabricated quasi-two-dimensional mimics of porous catalysts, which combine the traits of nanofluidics with single particle plasmonics and online mass spectrometry readout. Enabled by single particle resolution at operando conditions during CO oxidation over a Cu model catalyst, we directly visualize reactant concentration gradient formation due to conversion on single Cu nanoparticles inside the "model pore" and how it dynamically controls oxidation state-and, thus, activity-of particles downstream. Our results provide a general framework for single particle catalysis in the gas phase and highlight the importance of single particle approaches for the understanding of complex catalyst materials.
引用
收藏
页数:9
相关论文
共 47 条
[1]   Single Particle Plasmonics for Materials Science and Single Particle Catalysis [J].
Alekseeva, Svetlana ;
Nedrygailov, Ievgen I. ;
Langhammer, Christoph .
ACS PHOTONICS, 2019, 6 (06) :1319-1330
[2]   Grain boundary mediated hydriding phase transformations in individual polycrystalline metal nanoparticles [J].
Alekseeva, Svetlana ;
Fanta, Alice Bastos da Silva ;
Iandolo, Beniamino ;
Antosiewicz, Tomasz J. ;
Nugroho, Ferry Anggoro Ardy ;
Wagner, Jakob B. ;
Burrows, Andrew ;
Zhdanov, Vladimir P. ;
Langhammer, Christoph .
NATURE COMMUNICATIONS, 2017, 8
[3]   EVIDENCE FOR SUBSURFACE HYDROGEN ON PD(110) - AN INTERMEDIATE BETWEEN CHEMISORBED AND DISSOLVED SPECIES [J].
BEHM, RJ ;
PENKA, V ;
CATTANIA, MG ;
CHRISTMANN, K ;
ERTL, G .
JOURNAL OF CHEMICAL PHYSICS, 1983, 78 (12) :7486-7490
[4]   The impact of nanoscience on heterogeneous catalysis [J].
Bell, AT .
SCIENCE, 2003, 299 (5613) :1688-1691
[5]  
Beskok A, 1999, MICROSCALE THERM ENG, V3, P43
[6]   Cu Model Catalyst Dynamics and CO Oxidation Kinetics Studied by Simultaneous in Situ UV-Vis and Mass Spectroscopy [J].
Bu, Yibin ;
Niemantsverdriet, J. W. Hans ;
Fredriksson, Hans O. A. .
ACS CATALYSIS, 2016, 6 (05) :2867-2876
[7]  
Buurmans ILC, 2012, NAT CHEM, V4, P873, DOI [10.1038/NCHEM.1478, 10.1038/nchem.1478]
[8]   Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography [J].
Chan, George H. ;
Zhao, Jing ;
Hicks, Erin M. ;
Schatz, George C. ;
Van Duyne, Richard P. .
NANO LETTERS, 2007, 7 (07) :1947-1952
[9]   Copper catalysis in organic synthesis [J].
Chemler, Sherry R. .
BEILSTEIN JOURNAL OF ORGANIC CHEMISTRY, 2015, 11 :2252-2253
[10]   Catalyst Chemical State during CO Oxidation Reaction on Cu(111) Studied with Ambient-Pressure X-ray Photoelectron Spectroscopy and Near Edge X-ray Adsorption Fine Structure Spectroscopy [J].
Eren, Baran ;
Heine, Christian ;
Bluhm, Hendrik ;
Somorjai, Gabor A. ;
Salmeron, Miguel .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (34) :11186-11190