On the families of periodic orbits of the Sitnikov problem

被引:37
|
作者
Llibre, Jaume [1 ]
Ortega, Rafael [2 ]
机构
[1] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Spain
[2] Univ Granada, Fac Ciencias, Dept Matemat Aplicada, E-18071 Granada, Spain
关键词
3-body problem; Sitnikov problem; periodic orbits; global continuation;
D O I
10.1137/070695253
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main goal of this paper is to study analytically the families of symmetric periodic orbits of the elliptic Sitnikov problem for all values of the eccentricity in the interval [0, 1), providing qualitative and quantitative information on the bifurcation diagram of such families of periodic orbits. The basic tool for proving our results is the global continuation method of the zeros of a function depending on one parameter provided by Leray and Schauder and based in the Brouwer degree.
引用
收藏
页码:561 / 576
页数:16
相关论文
共 50 条
  • [41] Subharmonic solutions in the sitnikov problem
    Marchesin M.
    Castilho C.
    Qualitative Theory of Dynamical Systems, 2008, 7 (1) : 213 - 226
  • [42] Computation of families of periodic orbits and bifurcations around a massive annulus
    Tresaco, E.
    Elipe, A.
    Riaguas, A.
    ASTROPHYSICS AND SPACE SCIENCE, 2012, 338 (01) : 23 - 33
  • [43] Computation of families of periodic orbits and bifurcations around a massive annulus
    E. Tresaco
    A. Elipe
    A. Riaguas
    Astrophysics and Space Science, 2012, 338 : 23 - 33
  • [44] Symmetries and Bifurcations in the Sitnikov Problem
    Lidia Jiménez-Lara
    Adolfo Escalona-Buendía
    Celestial Mechanics and Dynamical Astronomy, 2001, 79 : 97 - 117
  • [45] Transient chaos in the Sitnikov problem
    T. Kovács
    B. Érdi
    Celestial Mechanics and Dynamical Astronomy, 2009, 105 : 289 - 304
  • [46] On equilibrium stability in the Sitnikov problem
    Kalas, V. O.
    Krasil'nikov, P. S.
    COSMIC RESEARCH, 2011, 49 (06) : 534 - 537
  • [47] Planar Symmetric Periodic Orbits in Four Dipole Problem
    P. G. Kazantzis
    C. D. Desiniotis
    Astrophysics and Space Science, 2005, 295 : 339 - 362
  • [48] Horseshoe periodic orbits in the restricted three body problem
    Llibre, J
    Ollé, M
    NEW ADVANCES IN CELESTIAL MECHANICS AND HAMILTONIAN SYSTEMS, 2004, : 137 - 152
  • [49] Periodic Orbits Close to That of the Moon in Hill's Problem
    Valsecchi, Giovanni B.
    FRONTIERS IN ASTRONOMY AND SPACE SCIENCES, 2018, 5
  • [50] ON THE BIFURCATION AND CONTINUATION OF PERIODIC ORBITS IN THE THREE BODY PROBLEM
    Antoniadou, K. I.
    Voyatzis, G.
    Kotoulas, T.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2011, 21 (08): : 2211 - 2219