On the families of periodic orbits of the Sitnikov problem

被引:37
|
作者
Llibre, Jaume [1 ]
Ortega, Rafael [2 ]
机构
[1] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Spain
[2] Univ Granada, Fac Ciencias, Dept Matemat Aplicada, E-18071 Granada, Spain
关键词
3-body problem; Sitnikov problem; periodic orbits; global continuation;
D O I
10.1137/070695253
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main goal of this paper is to study analytically the families of symmetric periodic orbits of the elliptic Sitnikov problem for all values of the eccentricity in the interval [0, 1), providing qualitative and quantitative information on the bifurcation diagram of such families of periodic orbits. The basic tool for proving our results is the global continuation method of the zeros of a function depending on one parameter provided by Leray and Schauder and based in the Brouwer degree.
引用
收藏
页码:561 / 576
页数:16
相关论文
共 50 条
  • [21] Families of periodic orbits in the planar Hill’s four-body problem
    Jaime Burgos-García
    Astrophysics and Space Science, 2016, 361
  • [22] Families of periodic orbits in the planar Hill's four-body problem
    Burgos-Garcia, Jaime
    ASTROPHYSICS AND SPACE SCIENCE, 2016, 361 (11)
  • [23] ON THE SITNIKOV PROBLEM
    Liu, Jie
    Sun, Yi-Sui
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1990, 49 (03) : 285 - 302
  • [24] Transient chaos in the Sitnikov problem
    Kovacs, T.
    Erdi, B.
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2009, 105 (04) : 289 - 304
  • [25] Energy levels of periodic solutions of the circular 2 + 2 Sitnikov problem
    Jiménez-Pérez H.
    Lacomba E.A.
    Qualitative Theory of Dynamical Systems, 2009, 8 (1) : 1 - 23
  • [26] GLOBAL BIFURCATIONS FROM THE CENTER OF MASS IN THE SITNIKOV PROBLEM
    Ortega, Rafael
    Rivera, Andres
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2010, 14 (02): : 719 - 732
  • [27] A Proof for a Stability Conjecture on Symmetric Periodic Solutions of the Elliptic Sitnikov Problem
    Cen, Xiuli
    Liu, Changjian
    Zhang, Meirong
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2021, 20 (02) : 941 - 952
  • [28] Keplerian periodic orbits in the isosceles problem
    Alfaro, M
    Monleón, CC
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1999, 75 (01) : 17 - 27
  • [29] BOUNDEDNESS AND PERIODIC ORBITS IN THE STARK PROBLEM
    Hsu, Ku-jung
    Kuang, Wentian
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2024, : 2540 - 2565
  • [30] Keplerian periodic orbits in the isosceles problem
    Martínez Alfaro
    C. Chiralt Monleón
    Celestial Mechanics and Dynamical Astronomy, 1999, 75 : 17 - 27