A variety of soliton solutions for the fractional Wazwaz-Benjamin-Bona-Mahony equations

被引:101
作者
Seadawy, Aly R. [1 ]
Ali, Khalid K. [2 ]
Nuruddeen, R. I. [3 ]
机构
[1] Taibah Univ, Fac Sci, Dept Math, Al Madinah Al Munawarah, Saudi Arabia
[2] Al Azhar Univ, Fac Sci, Dept Math, Cairo, Egypt
[3] Fed Univ Dutse, Fac Sci, Dept Math, Dutse, Jigawa State, Nigeria
关键词
Three-dimensional modified BBM equations; Conformable fractional derivative; Soliton solutions; NONLINEAR SCHRODINGER-EQUATION; TRAVELING-WAVE SOLUTIONS; DYNAMICS; BRIGHT;
D O I
10.1016/j.rinp.2019.02.064
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In the present paper, the new three-dimensional modified Benjamin-Bona-Mahony equations recently introduced are analyzed with the introduction of the spatial and temporal fractional order derivatives using conformable fractional derivative. Various solutions including hyperbolic and periodic function solutions are constructed using simple ansatzs with the aid of the Wolfram Mathematica software. Some graphical representations of the solutions are depicted.
引用
收藏
页码:2234 / 2241
页数:8
相关论文
共 38 条
[1]   New exact solitary wave solutions for the extended (3 [J].
Ali, Khalid K. ;
Nuruddeen, R., I ;
Hadhoud, Adel R. .
RESULTS IN PHYSICS, 2018, 9 :12-16
[2]  
[Anonymous], OPEN ENG
[3]  
[Anonymous], SHALLOW WATER WAVES
[4]  
[Anonymous], EXACT TRAVELING WAVE
[5]  
[Anonymous], EUR PHYS J PLUS
[6]  
[Anonymous], 2017, EUR PHYS J PLUS
[7]   Exact bright-dark solitary wave solutions of the higher-order cubic-quintic nonlinear Schrodinger equation and its stability [J].
Arshad, M. ;
Seadawy, Aly R. ;
Lu, Dianchen .
OPTIK, 2017, 138 :40-49
[8]  
Atangana A., 2016, Therm Sci
[9]  
Baskonus H.M., 2017, Indian J. Phys.
[10]   MODEL EQUATIONS FOR LONG WAVES IN NONLINEAR DISPERSIVE SYSTEMS [J].
BENJAMIN, TB ;
BONA, JL ;
MAHONY, JJ .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1972, 272 (1220) :47-+