Electrospun polymer biomaterials

被引:503
作者
Ding, Jianxun [1 ,6 ]
Zhang, Jin [2 ]
Li, Jiannan [1 ,4 ]
Li, Di [1 ]
Xiao, Chunsheng [1 ,6 ]
Xiao, Haihua [3 ]
Yang, Huanghao [5 ]
Zhuang, Xiuli [1 ,6 ]
Chen, Xuesi [1 ,6 ]
机构
[1] Chinese Acad Sci, Changchun Inst Appl Chem, Key Lab Polymer Ecomat, Changchun 130022, Jilin, Peoples R China
[2] Fuzhou Univ, Coll Chem Engn, Fuzhou 350108, Fujian, Peoples R China
[3] Chinese Acad Sci, Inst Chem, State Key Lab Polymer Phys & Chem, Beijing Natl Lab Mol Sci, Beijing 100190, Peoples R China
[4] Jilin Univ, Hosp 2, Dept Gen Surg, Changchun 130041, Jilin, Peoples R China
[5] Fuzhou Univ, Coll Chem, Fuzhou 350116, Fujian, Peoples R China
[6] Jilin Biomed Polymers Engn Lab, Changchun 130022, Jilin, Peoples R China
基金
中国国家自然科学基金;
关键词
Electrospinning; Polymer; Nanofiber; Microfiber; Functionalization; Biomedical application; SKELETAL-MUSCLE TISSUE; NANOFIBER-REINFORCED TRANSPARENT; IN-SITU SYNTHESIS; MECHANICAL-PROPERTIES; FIBROUS MEMBRANES; DRUG-DELIVERY; COMPOSITE NANOFIBERS; SURFACE MODIFICATION; SOUND-ABSORPTION; VASCULAR GRAFTS;
D O I
10.1016/j.progpolymsci.2019.01.002
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Electrospinning provides a versatile technique for the preparation of matrices with micro/nanoscopic fibers. The non-woven polymer materials produced by electrospinning have an extremely high surface-to-volume ratio, a complex porous structure with excellent pore-interconnectivity, and diverse fibrous morphologies. These remarkable features impart a wide range of desirable properties to electrospun matrices for meeting the requirements of advanced biomedical applications, such as pharmaceutical repositories, tissue engineering scaffolds, wound healing, sensors, reinforcement, sound absorption, and filtration. This review presents a comprehensive overview of the recent progress and potential developments of electrospun polymer matrices and their application as biomaterials. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 34
页数:34
相关论文
共 369 条
  • [31] Controlling Mesenchymal Stem Cell Gene Expression Using Polymer-Mediated Delivery of siRNA
    Benoit, Danielle S. W.
    Boutin, Molly E.
    [J]. BIOMACROMOLECULES, 2012, 13 (11) : 3841 - 3849
  • [32] Bergshoef MM, 1999, ADV MATER, V11, P1362, DOI 10.1002/(SICI)1521-4095(199911)11:16<1362::AID-ADMA1362>3.0.CO
  • [33] 2-X
  • [34] Electrospinning polyelectrolyte complexes: pH-responsive fibers
    Boas, Mor
    Gradys, Arkadiusz
    Vasilyev, Gleb
    Burman, Michael
    Zussman, Eyal
    [J]. SOFT MATTER, 2015, 11 (09) : 1739 - 1747
  • [35] Polymeric scaffolds for cardiac tissue engineering: requirements and fabrication technologies
    Boffito, Monica
    Sartori, Susanna
    Ciardelli, Gianluca
    [J]. POLYMER INTERNATIONAL, 2014, 63 (01) : 2 - 11
  • [36] Bognitzki M, 2001, ADV MATER, V13, P70, DOI 10.1002/1521-4095(200101)13:1<70::AID-ADMA70>3.0.CO
  • [37] 2-H
  • [38] Eumelanin 3D Architectures: Electrospun PLA Fiber Templating for Mammalian Pigment Microtube Fabrication
    Bonadies, Irene
    Cimino, Francesca
    Carfagna, Cosimo
    Pezzella, Alessandro
    [J]. BIOMACROMOLECULES, 2015, 16 (05) : 1667 - 1670
  • [39] Free Surface Electrospinning of Fibers Containing Microparticles
    Brettmann, Blair K.
    Tsang, Shirley
    Forward, Keith M.
    Rutledge, Gregory C.
    Myerson, Allan S.
    Trout, Bernhardt L.
    [J]. LANGMUIR, 2012, 28 (25) : 9714 - 9721
  • [40] Well-aligned cellulose nanofiber-reinforced polyvinyl alcohol composite film: Mechanical and optical properties
    Cai, Jie
    Chen, Jingyao
    Zhang, Qian
    Lei, Miao
    He, Jingren
    Xiao, Anhong
    Ma, Chengjie
    Li, Sha
    Xiong, Hanguo
    [J]. CARBOHYDRATE POLYMERS, 2016, 140 : 238 - 245