Grapevine Gene Systems for Resistance to Gray Mold Botrytis cinerea and Powdery Mildew Erysiphe necator

被引:18
作者
Fedorina, Jaroslava [1 ]
Tikhonova, Nadezhda [1 ,2 ]
Ukhatova, Yulia [1 ,2 ]
Ivanov, Roman [1 ]
Khlestkina, Elena [1 ,2 ]
机构
[1] Sirius Univ Sci & Technol, Plant Biol & Biotechnol Dept, Olymp Ave 1, Soci 354340, Russia
[2] NI Vavilov All Russian Res Inst Plant Genet Resou, B Morskaya St 42-44, St Petersburg 190000, Russia
来源
AGRONOMY-BASEL | 2022年 / 12卷 / 02期
关键词
gray mold; powdery mildew; plant engineering; CRISPR; Cas9; plant disease resistance; genes for susceptibility; genes for resistance; VITIS-VINIFERA L; GENOME-WIDE IDENTIFICATION; MARKER-ASSISTED SELECTION; RECEPTOR-LIKE KINASE; PLANT-GROWTH; UNCINULA-NECATOR; PYTHIUM-OLIGANDRUM; ASPARTIC PROTEASE; PHOSPHOLIPASE-D; MUSCADINIA-ROTUNDIFOLIA;
D O I
10.3390/agronomy12020499
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Grapevine is one of the world's most economically important fruit crops. It is known that Vitis vinifera is a host for a large number of pathogenic agents, which significantly reduce the yield and berry quality. This forces the agronomists to use a huge amount of fungicides. Over the last few decades, alternative methods for solving this problem have been developed and continue to be developed. Such new technologies as marker-assisted selection, bioengineering of the rhizosphere, genetic engineering (transgenesis, cisgenesis and intragenesis) allow the production of pathogen-resistant cultivars. However, they are linked to a number of problems. One of the most promising methods is the creation of modified non-transgenic cultivars via CRISPR/Cas9-targeted mutagenesis. Therefore, researchers are actively looking for target genes associated with pathogen resistance and susceptibility. This review elucidates the main mechanisms of plant-pathogen interactions, the immune systems developed by plants, as well as the identified genes for resistance and susceptibility to the biotrophic pathogen Erysiphe necator and the necrotrophic pathogen Botrytis cinerea.
引用
收藏
页数:25
相关论文
共 239 条
  • [1] Overexpression of CRK13, an Arabidopsis cysteine-rich receptor-like kinase, results in enhanced resistance to Pseudomonas syringae
    Acharya, Biswa R.
    Raina, Surabhi
    Maqbool, Shahina B.
    Jagadeeswaran, Guru
    Mosher, Stephen L.
    Appel, Heidi M.
    Schultz, Jack C.
    Klessig, Daniel F.
    Raina, Ramesh
    [J]. PLANT JOURNAL, 2007, 50 (03) : 488 - 499
  • [2] Transcriptome and metabolome reprogramming in Vitis vinifera cv. Trincadeira berries upon infection with Botrytis cinerea
    Agudelo-Romero, Patricia
    Erban, Alexander
    Rego, Cecilia
    Carbonell-Bejerano, Pablo
    Nascimento, Teresa
    Sousa, Lisete
    Martinez-Zapater, Jose M.
    Kopka, Joachim
    Fortes, Ana Margarida
    [J]. JOURNAL OF EXPERIMENTAL BOTANY, 2015, 66 (07) : 1769 - 1785
  • [3] Aguín O, 2004, AM J ENOL VITICULT, V55, P108
  • [4] Rhizosphere engineering: Enhancing sustainable plant ecosystem productivity
    Ahkami, Amir H.
    White, Richard Allen, III
    Handakumbura, Pubudu P.
    Jansson, Christer
    [J]. RHIZOSPHERE, 2017, 3 : 233 - 243
  • [5] Development of SCAR markers linked to powdery mildew (Uncinula necator) resistance in grapevine (Vitis vinifera L. and Vitis sp.)
    Akkurt, Murat
    Welter, Leocir
    Maul, Erika
    Toepfer, Reinhard
    Zyprian, Eva
    [J]. MOLECULAR BREEDING, 2007, 19 (02) : 103 - 111
  • [6] Genomic Analysis of the Necrotrophic Fungal Pathogens Sclerotinia sclerotiorum and Botrytis cinerea
    Amselem, Joelle
    Cuomo, Christina A.
    van Kan, Jan A. L.
    Viaud, Muriel
    Benito, Ernesto P.
    Couloux, Arnaud
    Coutinho, Pedro M.
    de Vries, Ronald P.
    Dyer, Paul S.
    Fillinger, Sabine
    Fournier, Elisabeth
    Gout, Lilian
    Hahn, Matthias
    Kohn, Linda M.
    Lapalu, Nicolas
    Plummer, Kim M.
    Pradier, Jean-Marc
    Quevillon, Emmanuel
    Sharon, Amir
    Simon, Adeline
    ten Have, Arjen
    Tudzynski, Bettina
    Tudzynski, Paul
    Wincker, Patrick
    Andrew, Marion
    Anthouard, Veronique
    Beever, Ross E.
    Beffa, Rolland
    Benoit, Isabelle
    Bouzid, Ourdia
    Brault, Baptiste
    Chen, Zehua
    Choquer, Mathias
    Collemare, Jerome
    Cotton, Pascale
    Danchin, Etienne G.
    Da Silva, Corinne
    Gautier, Angelique
    Giraud, Corinne
    Giraud, Tatiana
    Gonzalez, Celedonio
    Grossetete, Sandrine
    Gueldener, Ulrich
    Henrissat, Bernard
    Howlett, Barbara J.
    Kodira, Chinnappa
    Kretschmer, Matthias
    Lappartient, Anne
    Leroch, Michaela
    Levis, Caroline
    [J]. PLOS GENETICS, 2011, 7 (08):
  • [7] In Vivo Endophytic, Rhizospheric and Epiphytic Colonization of Vitis vinifera by the Plant-Growth Promoting and Antifungal Strain Pseudomonas protegens MP12
    Andreolli, Marco
    Zapparoli, Giacomo
    Lampis, Silvia
    Santi, Chiara
    Angelini, Elisa
    Bertazzon, Nadia
    [J]. MICROORGANISMS, 2021, 9 (02) : 1 - 14
  • [8] Diversity of bacterial endophytes in 3 and 15 year-old grapevines of Vitis vinifera cv. Corvina and their potential for plant growth promotion and phytopathogen control
    Andreolli, Marco
    Lampis, Silvia
    Zapparoli, Giacomo
    Angelini, Elisa
    Vallini, Giovanni
    [J]. MICROBIOLOGICAL RESEARCH, 2016, 183 : 42 - 52
  • [9] Ecology and Genetics of Natural Populations of North American Vitis Species Used as Rootstocks in European Grapevine Breeding Programs
    Arnold, Claire
    Schnitzler, Annik
    [J]. FRONTIERS IN PLANT SCIENCE, 2020, 11
  • [10] Naturally occurring broad-spectrum powdery mildew resistance in a central American tomato accession is caused by loss of Mlo function
    Bai, Yuling
    Pavan, Stefano
    Zheng, Zheng
    Zappel, Nana F.
    Reinstaedler, Anja
    Lotti, Concetta
    De Giovanni, Claudio
    Ricciardi, Luigi
    Lindhout, Pim
    Visser, Richard
    Theres, Klaus
    Panstruga, Ralph
    [J]. MOLECULAR PLANT-MICROBE INTERACTIONS, 2008, 21 (01) : 30 - 39