A unified method for the prediction of the fatigue strength of small-hole-containing components under combined loading

被引:0
作者
Ishimoto, I [1 ]
Endo, M [1 ]
机构
[1] Fukuoka Univ, Dept Engn Mech, Fukuoka, Japan
来源
ADVANCES IN FRACTURE AND STRENGTH, PTS 1- 4 | 2005年 / 297-300卷
关键词
fatigue strength prediction; combined stress; phase difference; mean stress; imposed static stress; biaxial stress; criterion for fatigue failure; small holes; small cracks;
D O I
10.4028/www.scientific.net/KEM.297-300.1929
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A unified method is presented for the prediction of the fatigue strength of steel components containing small holes and being subjected to combined loading. Materials investigated were an annealed 0.37% carbon steel and a quenched and tempered Cr-Mo steel. Combined axial and torsional fatigue loading tests were carried out using specimens containing a small hole, which was introduced into the surface by drilling. The diameter of holes equaled the depth and was either 100 mu m or 500 mu m. The non-propagating cracks emanating in the radial direction from the holes were observed at the fatigue limit. When the loading condition is the same, they were on a plane that inclined at the same angle with respect to the specimen axis, regardless of the size of holes. This result suggested that the fatigue strength would be controlled by the Mode I threshold condition for propagation of a crack initiated on a critical plane. A criterion connecting uniaxial fatigue strength with multiaxial fatigue strength was proposed based upon the assumption that at the threshold level, the variation of the stress intensity factor of a Mode 1 crack initiated under combined loading equaled that under uniaxial loading. The predictive method proposed based upon this criterion is practical in that no fatigue test is necessary in making predictions. For the various conditions of in-phase and out-of-phase fatigue loadings with an imposed mean or static load, experimental results agreed well with predictions.
引用
收藏
页码:1929 / 1935
页数:7
相关论文
共 6 条