Role of RGO support and irradiation source on the photocatalytic activity of CdS-ZnO semiconductor nanostructures

被引:45
作者
Kumar, Suneel [1 ,2 ]
Sharma, Rahul [1 ,2 ,3 ]
Sharma, Vipul [1 ,2 ]
Harith, Gurunarayanan [1 ,2 ]
Sivakumar, Vaidyanathan [3 ]
Krishnan, Venkata [1 ,2 ]
机构
[1] Indian Inst Technol Mandi, Sch Basic Sci, Mandi 175005, HP, India
[2] Indian Inst Technol Mandi, Adv Mat Res Ctr, Mandi 175005, HP, India
[3] Natl Inst Technol, Dept Chem, Rourkela, Odisha, India
关键词
catalytic properties; chemical synthesis; nanostructures; semiconductors; transmission electron microscopy (TEM); REDUCED GRAPHENE OXIDE; HYDROGEN-PRODUCTION; HETEROGENEOUS PHOTOCATALYSIS; EFFICIENT PHOTOCATALYST; COUPLED SEMICONDUCTOR; CHARGE-TRANSFER; METHYLENE-BLUE; GRAPHITE OXIDE; SENSITIZED ZNO; AZO DYES;
D O I
10.3762/bjnano.7.161
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Photocatalytic activity of semiconductor nanostructures is gaining much importance in recent years in both energy and environmental applications. However, several parameters play a crucial role in enhancing or suppressing the photocatalytic activity through, for example, modifying the band gap energy positions, influencing the generation and transport of charge carriers and altering the recombination rate. In this regard, physical parameters such as the support material and the irradiation source can also have significant effect on the activity of the photocatalysts. In this work, we have investigated the role of reduced graphene oxide (RGO) support and the irradiation source on mixed metal chalcogenide semiconductor (CdS-ZnO) nanostructures. The photocatalyst material was synthesized using a facile hydrothermal method and thoroughly characterized using different spectroscopic and microscopic techniques. The photocatalytic activity was evaluated by studying the degradation of a model dye (methyl orange, MO) under visible light (only) irradiation and under natural sunlight. The results reveal that the RGO-supported CdS-ZnO photocatalyst performs considerably better than the unsupported CdS-ZnO nanostructures. In addition, both the catalysts perform significantly better under natural sunlight than under visible light (only) irradiation. In essence, this work paves way for tailoring the photocatalytic activity of semiconductor nanostructures.
引用
收藏
页码:1684 / 1697
页数:14
相关论文
共 80 条
[1]   A facile one-step approach to synthesizing ZnO/graphene composites for enhanced degradation of methylene blue under visible light [J].
Ahmad, M. ;
Ahmed, E. ;
Hong, Z. L. ;
Xu, J. F. ;
Khalid, N. R. ;
Elhissi, A. ;
Ahmed, W. .
APPLIED SURFACE SCIENCE, 2013, 274 :273-281
[2]   Effect of Fe3+ ion doping to TiO2 on the photocatalytic degradation of Malachite Green dye under UV and vis-irradiation [J].
Asilturk, Meltem ;
Sayilkan, Funda ;
Arpac, Ertugrul .
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2009, 203 (01) :64-71
[3]   Highly enhanced photoreductive degradation of perchlorinated compounds on dye-sensitized metal/TiO2 under visible light [J].
Bae, E ;
Choi, W .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2003, 37 (01) :147-152
[4]   Synthesis of Coupled Semiconductor by Filling 1D TiO2 Nanotubes with CdS [J].
Banerjee, Subarna ;
Mohapatra, Susanta K. ;
Das, Prajna P. ;
Misra, Mano .
CHEMISTRY OF MATERIALS, 2008, 20 (21) :6784-6791
[5]   Enhanced Photovoltaic Performance of Semiconductor-Sensitized ZnO-CdS Coupled with Graphene Oxide as a Novel Photoactive Material [J].
Barpuzary, Dipankar ;
Qureshi, Mohammad .
ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (22) :11673-11682
[6]   Hierarchically Grown Urchinlike CdS@ZnO and CdS@Al2O3 Heteroarrays for Efficient Visible-Light-Driven Photocatalytic Hydrogen Generation [J].
Barpuzary, Dipankar ;
Khan, Ziyauddin ;
Vinothkumar, Natarajan ;
De, Mahuya ;
Qureshi, Mohammad .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (01) :150-156
[7]   UV-vis versus visible degradation of Acid Orange II in a coupled CdS/TiO2 semiconductors suspension [J].
Bessekhouad, Y. ;
Chaoui, N. ;
Trzpit, M. ;
Ghazzal, N. ;
Robert, D. ;
Weber, J. V. .
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2006, 183 (1-2) :218-224
[8]   3D graphene/ZnO composite with enhanced photocatalytic activity [J].
Cai, Ran ;
Wu, Jia-gen ;
Sun, Li ;
Liu, Yan-jun ;
Fang, Ting ;
Zhu, Shan ;
Li, Shao-yang ;
Wang, Yue ;
Guo, Li-feng ;
Zhao, Cui-e ;
Wei, Ang .
MATERIALS & DESIGN, 2016, 90 :839-844
[9]   Synthesis of graphene-ZnO nanorod nanocomposites with improved photoactivity and anti-photocorrosion [J].
Chen, Zhang ;
Zhang, Nan ;
Xu, Yi-Jun .
CRYSTENGCOMM, 2013, 15 (15) :3022-3030
[10]   DEGRADATION OF AZO DYES BY ENVIRONMENTAL MICROORGANISMS AND HELMINTHS [J].
CHUNG, KT ;
STEVENS, SE .
ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY, 1993, 12 (11) :2121-2132