Bound states for a coupled Schrodinger system

被引:190
作者
Bartsch, Thomas [1 ]
Wang, Zhi-Qiang [2 ]
Wei, Juncheng [3 ]
机构
[1] Univ Giessen, Math Inst, D-35392 Giessen, Germany
[2] Utah State Univ, Dept Math & Stat, Logan, UT 84322 USA
[3] Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China
关键词
Bound states; coupled Schrodinger equations; global bifurcation;
D O I
10.1007/s11784-007-0033-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the existence of bound states for the coupled elliptic system Delta u(1) - lambda(1)u(1) + mu(1)u(1)(3) + beta u(2)(2)u(1) = 0 in R(n), Delta u(2) - lambda(2)u(2) + mu(2)u(2)(3) + beta u(1)(2)u(2) = 0 in R(n), u(1) > 0, u(2) > 0, u(1), u(2) is an element of H(1)(R(n)), where n <= 3. Using the fixed point index in cones we prove the existence of a five-dimensional continuum C subset of R(+)(5) x H(1)(R(n)) x H(1)(R(n)) of solutions (lambda(1), lambda(2), mu(1), mu(2), beta, u(1), u(2)) bifurcating from the set of semipositive solutions (where u(1) = 0 or u(2) = 0) and investigate the parameter range covered by C.
引用
收藏
页码:353 / 367
页数:15
相关论文
共 32 条
[1]   Partially coherent solitons on a finite background [J].
Akhmediev, N ;
Ankiewicz, A .
PHYSICAL REVIEW LETTERS, 1999, 82 (13) :2661-2664
[2]  
ALEXANDER JC, 1981, ARCH RATION MECH AN, V76, P339
[3]   Bound and ground states of coupled nonlinear Schrodinger equations [J].
Ambrosetti, A ;
Colorado, E .
COMPTES RENDUS MATHEMATIQUE, 2006, 342 (07) :453-458
[4]   Standing waves of some coupled nonlinear Schrodinger equations [J].
Ambrosetti, Antonio ;
Colorado, Eduardo .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2007, 75 :67-82
[5]   Sign changing solutions of superlinear Schrodinger equations [J].
Bartsch, T ;
Liu, ZL ;
Weth, T .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2004, 29 (1-2) :25-42
[6]  
BARTSCH T, 2005, BOUND STATES COUPLED
[7]  
Bartsch T, 2006, J PARTIAL DIFFER EQ, V19, P200
[8]   Symmetry results for semilinear elliptic systems in the whole space [J].
Busca, J ;
Sirakov, B .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2000, 163 (01) :41-56
[9]  
Chang K. C., 1993, PROGR NONLINEAR DIFF, V6
[10]   Periodic solutions for a system of four coupled nonlinear Schrodinger equations [J].
Chow, KW .
PHYSICS LETTERS A, 2001, 285 (5-6) :319-326