VS-Net: Variable Splitting Network for Accelerated Parallel MRI Reconstruction

被引:69
作者
Duan, Jinming [1 ,2 ]
Schlemper, Jo [2 ]
Qin, Chen [2 ]
Ouyang, Cheng [2 ]
Bai, Wenjia [2 ]
Biffi, Carlo [2 ]
Bello, Ghalib [3 ]
Statton, Ben [3 ]
O'Regan, Declan P. [3 ]
Rueckert, Daniel [2 ]
机构
[1] Univ Birmingham, Sch Comp Sci, Birmingham, W Midlands, England
[2] Imperial Coll London, Biomed Image Anal Grp, London, England
[3] Imperial Coll London, MRC London Inst Med Sci, London, England
来源
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT IV | 2019年 / 11767卷
基金
英国工程与自然科学研究理事会;
关键词
MODELS;
D O I
10.1007/978-3-030-32251-9_78
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this work, we propose a deep learning approach for parallel magnetic resonance imaging (MRI) reconstruction, termed a variable splitting network (VS-Net), for an efficient, high-quality reconstruction of undersampled multi-coil MR data. We formulate the generalized parallel compressed sensing reconstruction as an energy minimization problem, for which a variable splitting optimization method is derived. Based on this formulation we propose a novel, end-to-end trainable deep neural network architecture by unrolling the resulting iterative process of such variable splitting scheme. VS-Net is evaluated on complex valued multicoil knee images for 4-fold and 6-fold acceleration factors. We show that VS-Net outperforms state-of-the-art deep learning reconstruction algorithms, in terms of reconstruction accuracy and perceptual quality. Our code is publicly available at https://github.com/j-duan/VS-Net.
引用
收藏
页码:713 / 722
页数:10
相关论文
共 17 条
[1]   MoDL: Model-Based Deep Learning Architecture for Inverse Problems [J].
Aggarwal, Hemant K. ;
Mani, Merry P. ;
Jacob, Mathews .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (02) :394-405
[2]   Scan-specific robust artificial-neural-networks for k-space interpolation (RAKI) reconstruction: Database-free deep learning for fast imaging [J].
Akcakaya, Mehmet ;
Moeller, Steen ;
Weingaertner, Sebastian ;
Ugurbil, Kamil .
MAGNETIC RESONANCE IN MEDICINE, 2019, 81 (01) :439-453
[3]   Denoising optical coherence tomography using second order total generalized variation decomposition [J].
Duan, Jinming ;
Lu, Wenqi ;
Tench, Christopher ;
Gottlob, Irene ;
Proudlock, Frank ;
Samani, Niraj Nilesh ;
Bai, Li .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2016, 24 :120-127
[4]   Learning a variational network for reconstruction of accelerated MRI data [J].
Hammernik, Kerstin ;
Klatzer, Teresa ;
Kobler, Erich ;
Recht, Michael P. ;
Sodickson, Daniel K. ;
Pock, Thomas ;
Knoll, Florian .
MAGNETIC RESONANCE IN MEDICINE, 2018, 79 (06) :3055-3071
[5]  
Han Y, 2018, ARXIV180503779
[6]  
Jin K. H., 2019, ARXIV190104547
[7]   Undersampled CS image reconstruction using nonconvex nonsmooth mixed constraints [J].
Liu, Ryan Wen ;
Yin, Wei ;
Shi, Lin ;
Duan, Jinming ;
Yu, Simon Chun Ho ;
Wang, Defeng .
MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (10) :12749-12782
[8]   Graph- and finite element-based total variation models for the inverse problem in diffuse optical tomography [J].
Lu, Wenqi ;
Duan, Jinming ;
Orive-Miguel, David ;
Herve, Lionel ;
Styles, Iain B. .
BIOMEDICAL OPTICS EXPRESS, 2019, 10 (06) :2684-2707
[9]   Implementation of high-order variational models made easy for image processing [J].
Lu, Wenqi ;
Duan, Jinming ;
Qiu, Zhaowen ;
Pan, Zhenkuan ;
Liu, Ryan Wen ;
Bai, Li .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (14) :4208-4233
[10]   Deep Generative Adversarial Neural Networks for Compressive Sensing MRI [J].
Mardani, Morteza ;
Gong, Enhao ;
Cheng, Joseph Y. ;
Vasanawala, Shreyas S. ;
Zaharchuk, Greg ;
Xing, Lei ;
Pauly, John M. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (01) :167-179