VS-Net: Variable Splitting Network for Accelerated Parallel MRI Reconstruction

被引:64
作者
Duan, Jinming [1 ,2 ]
Schlemper, Jo [2 ]
Qin, Chen [2 ]
Ouyang, Cheng [2 ]
Bai, Wenjia [2 ]
Biffi, Carlo [2 ]
Bello, Ghalib [3 ]
Statton, Ben [3 ]
O'Regan, Declan P. [3 ]
Rueckert, Daniel [2 ]
机构
[1] Univ Birmingham, Sch Comp Sci, Birmingham, W Midlands, England
[2] Imperial Coll London, Biomed Image Anal Grp, London, England
[3] Imperial Coll London, MRC London Inst Med Sci, London, England
来源
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT IV | 2019年 / 11767卷
基金
英国工程与自然科学研究理事会;
关键词
MODELS;
D O I
10.1007/978-3-030-32251-9_78
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this work, we propose a deep learning approach for parallel magnetic resonance imaging (MRI) reconstruction, termed a variable splitting network (VS-Net), for an efficient, high-quality reconstruction of undersampled multi-coil MR data. We formulate the generalized parallel compressed sensing reconstruction as an energy minimization problem, for which a variable splitting optimization method is derived. Based on this formulation we propose a novel, end-to-end trainable deep neural network architecture by unrolling the resulting iterative process of such variable splitting scheme. VS-Net is evaluated on complex valued multicoil knee images for 4-fold and 6-fold acceleration factors. We show that VS-Net outperforms state-of-the-art deep learning reconstruction algorithms, in terms of reconstruction accuracy and perceptual quality. Our code is publicly available at https://github.com/j-duan/VS-Net.
引用
收藏
页码:713 / 722
页数:10
相关论文
共 17 条
  • [1] MoDL: Model-Based Deep Learning Architecture for Inverse Problems
    Aggarwal, Hemant K.
    Mani, Merry P.
    Jacob, Mathews
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (02) : 394 - 405
  • [2] Scan-specific robust artificial-neural-networks for k-space interpolation (RAKI) reconstruction: Database-free deep learning for fast imaging
    Akcakaya, Mehmet
    Moeller, Steen
    Weingaertner, Sebastian
    Ugurbil, Kamil
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2019, 81 (01) : 439 - 453
  • [3] Denoising optical coherence tomography using second order total generalized variation decomposition
    Duan, Jinming
    Lu, Wenqi
    Tench, Christopher
    Gottlob, Irene
    Proudlock, Frank
    Samani, Niraj Nilesh
    Bai, Li
    [J]. BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2016, 24 : 120 - 127
  • [4] Learning a variational network for reconstruction of accelerated MRI data
    Hammernik, Kerstin
    Klatzer, Teresa
    Kobler, Erich
    Recht, Michael P.
    Sodickson, Daniel K.
    Pock, Thomas
    Knoll, Florian
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2018, 79 (06) : 3055 - 3071
  • [5] Han Y, 2018, ARXIV180503779
  • [6] Jin K. H., 2019, ARXIV190104547
  • [7] Undersampled CS image reconstruction using nonconvex nonsmooth mixed constraints
    Liu, Ryan Wen
    Yin, Wei
    Shi, Lin
    Duan, Jinming
    Yu, Simon Chun Ho
    Wang, Defeng
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (10) : 12749 - 12782
  • [8] Graph- and finite element-based total variation models for the inverse problem in diffuse optical tomography
    Lu, Wenqi
    Duan, Jinming
    Orive-Miguel, David
    Herve, Lionel
    Styles, Iain B.
    [J]. BIOMEDICAL OPTICS EXPRESS, 2019, 10 (06) : 2684 - 2707
  • [9] Implementation of high-order variational models made easy for image processing
    Lu, Wenqi
    Duan, Jinming
    Qiu, Zhaowen
    Pan, Zhenkuan
    Liu, Ryan Wen
    Bai, Li
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (14) : 4208 - 4233
  • [10] Deep Generative Adversarial Neural Networks for Compressive Sensing MRI
    Mardani, Morteza
    Gong, Enhao
    Cheng, Joseph Y.
    Vasanawala, Shreyas S.
    Zaharchuk, Greg
    Xing, Lei
    Pauly, John M.
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (01) : 167 - 179