The boundary value problem for the three-dimensional steady viscous compressible Navier-Stokes/Allen-Cahn (NSAC) system is considered. We establish the existence of a weak solution for the adiabatic index gamma > 2 with the phase function belonging to [-1, 1 ] . Moreover, we give further analysis on the weak solu-tion. More specifically, we prove that the steady NSAC system degenerates into Navier-Stokes system if the phase function is positive (negative) on (Omega) over bar. (c) 2020 Elsevier Inc. All rights reserved.