Influences of refrigerant-based nanofluid composition and heating condition on the migration of nanoparticles during pool boiling. Part I: Experimental measurement

被引:33
作者
Peng, Hao [1 ,2 ]
Ding, Guoliang [1 ]
Hu, Haitao [1 ]
机构
[1] Shanghai Jiao Tong Univ, Inst Refrigerat & Cryogen, Shanghai 200240, Peoples R China
[2] Chinese Acad Sci, Inst Mech, Natl Micrograv Lab, Key Lab Micrograv, Beijing 100190, Peoples R China
来源
INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID | 2011年 / 34卷 / 08期
关键词
Heat flux; Oil; Particle; Pool boiling; Refrigerant; THERMAL-CONDUCTIVITY; NANOREFRIGERANT; MIXTURES; MODEL;
D O I
10.1016/j.ijrefrig.2011.07.010
中图分类号
O414.1 [热力学];
学科分类号
摘要
Influences of refrigerant-based nanofluid composition and heating condition on the migration of nanoparticles during pool boiling were investigated experimentally. The nanoparticles include Cu (average diameters of 20, 50 and 80 nm), Al and Al(2)O(3) (average diameters of 20 nm), and CuO (average diameter of 40 nm). The refrigerants include R113, R141b and n-pentane. The mass fraction of lubricating oil RB68EP is from 0 to 10 wt%, the heat flux is from 10 to 100 kW m(-2), and the initial liquid-level height is from 1.3 to 3.4 cm. The experimental results show that the migration ratio of nanoparticles during the pool boiling of refrigerant-based nanofluid increases with the decrease of nanoparticle density, nanoparticle size, dynamic viscosity of refrigerant, mass fraction of lubricating oil or heat flux; while increases with the increase of liquid-phase density of refrigerant or initial liquid-level height. (C) 2011 Elsevier Ltd and IIR. All rights reserved.
引用
收藏
页码:1823 / 1832
页数:10
相关论文
共 19 条
[1]   Application of nanoparticles in domestic refrigerators [J].
Bi, Sheng-shan ;
Shi, Lin ;
Zhang, Li-li .
APPLIED THERMAL ENGINEERING, 2008, 28 (14-15) :1834-1843
[2]   The migration characteristics of nanoparticles in the pool boiling process of nanorefrigerant and nanorefrigerant-oil mixture [J].
Ding, Guoliang ;
Peng, Hao ;
Jiang, Weiting ;
Gao, Yifeng .
INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2009, 32 (01) :114-123
[3]  
Edzwald J. K., 1990, WATER SUPPLY JONKOPI, V8, P141
[4]   Flow-boiling heat transfer of R-134a-based nanofluids in a horizontal tube [J].
Henderson, Kristen ;
Park, Young-Gil ;
Liu, Liping ;
Jacobi, Anthony M. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2010, 53 (5-6) :944-951
[5]   PREDICTION OF NUCLEATE POOL BOILING HEAT-TRANSFER COEFFICIENTS OF REFRIGERANT-OIL MIXTURES [J].
JENSEN, MK ;
JACKMAN, DL .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 1984, 106 (01) :184-190
[6]   Experimental and Model Research on Nanorefrigerant Thermal Conductivity [J].
Jiang, Weiting ;
Ding, Guoliang ;
Peng, Hao ;
Gao, Yifeng ;
Wang, Kaijian .
HVAC&R RESEARCH, 2009, 15 (03) :651-669
[7]   Effect of CuO nanolubricant on R134a pool boiling heat transfer [J].
Kedzierski, M. A. ;
Gong, M. .
INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2009, 32 (05) :791-799
[8]  
Kedzierski M.A., 1993, P 6 INT S TRANSP PHE, V1, P111
[9]  
KEDZIERSKI MA, 2009, P MNHMT09 2 ASME MIC
[10]   Sorption and agglutination phenomenon of nanofluids on a plain heating surface during pool boiling [J].
Liu, Zhen-hua ;
Liao, Liang .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2008, 51 (9-10) :2593-2602