Multiscale finite element discretizations based on local defect correction for the biharmonic eigenvalue problem of plate buckling

被引:2
作者
Wang, Shijie [1 ]
Yang, Yidu [1 ]
Bi, Hai [1 ]
机构
[1] Guizhou Normal Univ, Sch Math Sci, Guiyang 550001, Guizhou, Peoples R China
基金
中国国家自然科学基金;
关键词
biharmonic eigenvalues; clamped boundary; error estimates; local defect correction; multilscale discretization; plate buckling; FUNCTIONALLY GRADED PLATES; REISSNER-MINDLIN PLATES; ISOGEOMETRIC ANALYSIS; 2-GRID DISCRETIZATION; UNIVERSAL BOUNDS; ALGORITHMS; INEQUALITIES; PARTITION; UNITY; NURBS;
D O I
10.1002/mma.5409
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the multiscale finite element discretizations about the biharmonic eigenvalue problem of plate buckling. On the basis of the work of Dai and Zhou (SIAM J. Numer. Anal. 46[1] [2008] 295-324), we establish a three-scale scheme, a multiscale discretization scheme, and the associated parallel version based on local defect correction. We first prove a local priori error estimate of finite element approximations, then give the error estimates of multiscale discretization schemes. Theoretical analysis and numerical experiments indicate that our schemes are suitable and efficient for eigenfunctions with local low smoothness.
引用
收藏
页码:999 / 1017
页数:19
相关论文
共 43 条
  • [1] [Anonymous], 1991, Handbk Numer Anal
  • [2] An adaptive multilevel local defect correction technique with application to combustion
    Anthonissen, MJH
    Bennett, BAV
    Smooke, MD
    [J]. COMBUSTION THEORY AND MODELLING, 2005, 9 (02) : 273 - 299
  • [3] On the buckling eigenvalue problem
    Antunes, Pedro R. S.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (21)
  • [4] LOCAL AND PARALLEL FINITE ELEMENT DISCRETIZATIONS FOR EIGENVALUE PROBLEMS
    Bi, Hai
    Yang, Yidu
    Li, Hao
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (06) : A2575 - A2597
  • [5] Blum H., 1980, Math. Methods Appl. Sci, V2, P556, DOI [10.1002/mma.1670020416, DOI 10.1002/MMA.1670020416]
  • [6] C0 Interior Penalty Galerkin Method for Biharmonic Eigenvalue Problems
    Brenner, Susanne C.
    Monk, Peter
    Sun, Jiguang
    [J]. SPECTRAL AND HIGH ORDER METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS ICOSAHOM 2014, 2015, 106 : 3 - 15
  • [7] Brown BM, 1999, ARXIVMATH9905038V1MA
  • [8] Buckling analysis of Reissner-Mindlin plates subjected to in-plane edge loads using a shear-locking-free and meshfree method
    Bui, T. Q.
    Nguyen, M. N.
    Zhang, Ch.
    [J]. ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2011, 35 (09) : 1038 - 1053
  • [9] Chen L, 2008, Technical report
  • [10] Inequalities for eigenvalues of the buckling problem of arbitrary order
    Cheng, Qing-Ming
    Qi, Xuerong
    Wang, Qiaoling
    Xia, Changyu
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2018, 197 (01) : 211 - 232