Machine learning-based phenogrouping in heart failure to identify responders to cardiac resynchronization therapy

被引:184
作者
Cikes, Maja [1 ,2 ]
Sanchez-Martinez, Sergio [3 ]
Claggett, Brian [4 ]
Duchateau, Nicolas [5 ]
Piella, Gemma [3 ]
Butakoff, Constantine [3 ]
Pouleur, Anne Catherine [6 ]
Knappe, Dorit [7 ]
Biering-Sorensen, Tor [4 ,8 ]
Kutyifa, Valentina [9 ]
Moss, Arthur [9 ]
Stein, Kenneth [10 ]
Solomon, Scott D. [4 ]
Bijnens, Bart [3 ,11 ]
机构
[1] Univ Zagreb, Sch Med, Dept Cardiovasc Dis, Zagreb, Croatia
[2] Univ Hosp Ctr Zagreb, Zagreb, Croatia
[3] Univ Pompeu Fabra, Dept Informat & Commun Technol, Barcelona, Spain
[4] Brigham & Womens Hosp, 75 Francis St, Boston, MA 02115 USA
[5] Univ Lyon 1, INSERM, U1206, Creatis,CNRS,UMR5220, Lyon, France
[6] Clin St Luc UCL, Div Cardiol, Brussels, Belgium
[7] Univ Heart Ctr Hamburg, Hamburg, Germany
[8] Univ Copenhagen, Herlev & Gentofte Hosp, Copenhagen, Denmark
[9] Univ Rochester, Rochester, NY USA
[10] Boston Sci, Minneapolis, MN USA
[11] ICREA, Barcelona, Spain
关键词
Machine learning; Heart failure; Personalized medicine; Echocardiography; Cardiac resynchronization therapy; DEFIBRILLATOR IMPLANTATION TRIAL; MYOCARDIAL MOTION; PREDICTORS; DEVICES; CRT;
D O I
10.1002/ejhf.1333
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
AimsWe tested the hypothesis that a machine learning (ML) algorithm utilizing both complex echocardiographic data and clinical parameters could be used to phenogroup a heart failure (HF) cohort and identify patients with beneficial response to cardiac resynchronization therapy (CRT). Methods and resultsWe studied 1106 HF patients from the Multicenter Automatic Defibrillator Implantation Trial with Cardiac Resynchronization Therapy (MADIT-CRT) (left ventricular ejection fraction 30%, QRS 130ms, New York Heart Association class II) randomized to CRT with a defibrillator (CRT-D, n=677) or an implantable cardioverter defibrillator (ICD, n=429). An unsupervised ML algorithm (Multiple Kernel Learning and K-means clustering) was used to categorize subjects by similarities in clinical parameters, and left ventricular volume and deformation traces at baseline into mutually exclusive groups. The treatment effect of CRT-D on the primary outcome (all-cause death or HF event) and on volume response was compared among these groups. Our analysis identified four phenogroups, significantly different in the majority of baseline clinical characteristics, biomarker values, measures of left and right ventricular structure and function and the primary outcome occurrence. Two phenogroups included a higher proportion of known clinical characteristics predictive of CRT response, and were associated with a substantially better treatment effect of CRT-D on the primary outcome [hazard ratio (HR) 0.35; 95% confidence interval (CI) 0.19-0.64; P=0.0005 and HR 0.36; 95% CI 0.19-0.68; P=0.001] than observed in the other groups (interaction P=0.02). ConclusionsOur results serve as a proof-of-concept that, by integrating clinical parameters and full heart cycle imaging data, unsupervised ML can provide a clinically meaningful classification of a phenotypically heterogeneous HF cohort and might aid in optimizing the rate of responders to specific therapies.
引用
收藏
页码:74 / 85
页数:12
相关论文
共 30 条
[1]   Cardiac resynchronization in chronic heart failure [J].
Abraham, WT ;
Fisher, WG ;
Smith, AL ;
Delurgio, DB ;
Leon, AR ;
Loh, E ;
Kocovic, DZ ;
Packer, M ;
Clavell, AL ;
Hayes, DL ;
Ellestad, M ;
Messenger, J ;
Trupp, RJ ;
Underwood, J ;
Pickering, F ;
Truex, C ;
McAtee, P .
NEW ENGLAND JOURNAL OF MEDICINE, 2002, 346 (24) :1845-1853
[2]   Machine Learning Methods Improve Prognostication, Identify Clinically Distinct Phenotypes, and Detect Heterogeneity in Response to Therapy in a Large Cohort of Heart Failure Patients [J].
Ahmad, Tariq ;
Lund, Lars H. ;
Rao, Pooja ;
Ghosh, Rohit ;
Warier, Prashant ;
Vaccaro, Benjamin ;
Dahlstrom, Ulf ;
O'Connor, Christopher M. ;
Felker, G. Michael ;
Desai, Nihar R. .
JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2018, 7 (08)
[3]  
[Anonymous], J STAT SOFTWARE
[4]   Machine learning in heart failure: ready for prime time [J].
Awan, Saqib Ejaz ;
Sohel, Ferdous ;
Sanfilippo, Frank Mario ;
Bennamoun, Mohammed ;
Dwivedi, Girish .
CURRENT OPINION IN CARDIOLOGY, 2018, 33 (02) :190-195
[5]   Can we open the black box of AI? [J].
Castelvecchi D. .
Nature, 2016, 538 (7623) :20-23
[6]   Results of the predictors of response to CRT (PROSPECT) trial [J].
Chung, Eugene S. ;
Leon, Angel R. ;
Tavazzi, Luigi ;
Sun, Jing-Ping ;
Nihoyannopoulos, Petros ;
Merlino, John ;
Abraham, William T. ;
Ghio, Stefano ;
Leclercq, Christophe ;
Bax, Jeroen J. ;
Yu, Cheuk-Man ;
Gorcsan, John, III ;
Sutton, Martin St John ;
De Sutter, Johan ;
Murillo, Jaime .
CIRCULATION, 2008, 117 (20) :2608-2616
[7]   Beyond ejection fraction: an integrative approach for assessment of cardiac structure and function in heart failure [J].
Cikes, Maja ;
Solomon, Scott D. .
EUROPEAN HEART JOURNAL, 2016, 37 (21) :1642-U25
[8]  
Dougherty J., 1995, Machine Learning. Proceedings of the Twelfth International Conference on Machine Learning, P194
[9]  
Duchateau Nicolas, 2013, Geometric Science of Information. First International Conference, GSI 2013. Proceedings. LNCS 8085, P578, DOI 10.1007/978-3-642-40020-9_64
[10]   Quantification of local changes in myocardial motion by diffeomorphic registration via currents: Application to paced hypertrophic obstructive cardiomyopathy in 2D echocardiographic sequences [J].
Duchateau, Nicolas ;
Giraldeau, Genevieve ;
Gabrielli, Luigi ;
Fernandez-Armenta, Juan ;
Penela, Diego ;
Evertz, Reinder ;
Mont, Lluis ;
Brugada, Josep ;
Berruezo, Antonio ;
Sitges, Marta ;
Bijnens, Bart H. .
MEDICAL IMAGE ANALYSIS, 2015, 19 (01) :203-219