Transition to Chaos in Five-Dimensional Porous-Medium Thermal-Hydrodynamic Model with Low Prandtl Number

被引:3
作者
Beljadid, Abdelaziz [1 ,2 ]
Joundy, Youssef [3 ]
Rouah, Hamza [4 ]
Taik, Ahmed [4 ]
机构
[1] Mohammed VI Polytech Univ, Int Water Res Inst, Ben Guerir, Morocco
[2] Univ Ottawa, Dept Math & Stat, Ottawa, ON, Canada
[3] Chouaib Doukkali Univ, Polydisciplinary Fac Sidi Bennour, Jabran Khalil Jabran Ave,POB 299-24000, El Jadida, Morocco
[4] Univ Hassan II Casablanca, Lab Math & Applicat, FST Mohammadia, Casablanca, Morocco
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2022年 / 32卷 / 02期
关键词
Chaos; Lyapunov exponent; spectral method; porous media; Runge-Kutta method; GENERALIZED LORENZ MODELS; NATURAL-CONVECTION; MODERATE; ROUTES; ATTRACTORS;
D O I
10.1142/S0218127422500213
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate the transition to a chaotic regime of thermal convection in a five-dimensional model with low Prandtl number in a porous medium. The mathematical formulation of the model includes the heat equation coupled with the equations of motion under the Boussinesq-Darcy approximation. A system of five ordinary differential equations is derived using a spectral method. This system is solved numerically by using the fourth-order Runge-Kutta method. The results show that from a subcritical value of the Rayleigh number, a transition from steady convection to chaos via a Hopf bifurcation produces a limit cycle which can be associated with a homoclinic explosion. Furthermore, we find that for certain values of Rayleigh number and shape parameter which measures the ratio between the dimensions of the computational domain, the transition from periodic oscillatory convection to chaotic convection can occur via a period-doubling.
引用
收藏
页数:22
相关论文
共 35 条
  • [1] Dynamics of Convective Thermal Explosion in Porous Media
    Allali, Karam
    Joundy, Youssef
    Taik, Ahmed
    Volpert, Vitaly
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2020, 30 (06):
  • [2] Suppression of Chaos in Porous Media Convection under Multifrequency Gravitational Modulation
    Allali, Karam
    [J]. ADVANCES IN MATHEMATICAL PHYSICS, 2018, 2018
  • [3] LOW-DIMENSIONAL CHAOS IN AN INSTANCE OF EPILEPSY
    BABLOYANTZ, A
    DESTEXHE, A
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1986, 83 (10) : 3513 - 3517
  • [4] Predicting homoclinic bifurcations in planar autonomous systems
    Belhaq, M
    Lakrad, F
    Fahsi, A
    [J]. NONLINEAR DYNAMICS, 1999, 18 (04) : 303 - 310
  • [5] FROM CHAOS TO ORDER - PERSPECTIVES AND METHODOLOGIES IN CONTROLLING CHAOTIC NONLINEAR DYNAMICAL SYSTEMS
    Chen, Guanrong
    Dong, Xiaoning
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1993, 3 (06): : 1363 - 1409
  • [6] CONTROLLING CARDIAC CHAOS
    GARFINKEL, A
    SPANO, ML
    DITTO, WL
    WEISS, JN
    [J]. SCIENCE, 1992, 257 (5074) : 1230 - 1235
  • [7] CRISES, SUDDEN CHANGES IN CHAOTIC ATTRACTORS, AND TRANSIENT CHAOS
    GREBOGI, C
    OTT, E
    YORKE, JA
    [J]. PHYSICA D, 1983, 7 (1-3): : 181 - 200
  • [8] LARGE-SCALE FLOW IN TURBULENT CONVECTION - A MATHEMATICAL-MODEL
    HOWARD, LN
    KRISHNAMURTI, R
    [J]. JOURNAL OF FLUID MECHANICS, 1986, 170 : 385 - 410
  • [9] Chaos theory and epilepsy
    Iasemidis, LD
    Sackellares, JC
    [J]. NEUROSCIENTIST, 1996, 2 (02) : 118 - 126
  • [10] On a Five-Dimensional Chaotic System Arising from Double-Diffusive Convection in a Fluid Layer
    Idris, R.
    Siri, Z.
    Hashim, I.
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2013,