Multiscale Temporal Network for Video-Based Gait Recognition

被引:0
作者
Wu, Xinhui [1 ,2 ]
Yu, Shiqi [1 ,2 ]
Huang, Yongzhen [3 ,4 ]
机构
[1] Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen, Peoples R China
[2] Shenzhen Inst Artificial Intelligence & Robot Soc, Shenzhen, Peoples R China
[3] Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing, Peoples R China
[4] Watrix Technol Co Ltd, Beijing, Peoples R China
来源
BIOMETRIC RECOGNITION (CCBR 2019) | 2019年 / 11818卷
关键词
Gait recognition; Multiscale feature; Temporal feature;
D O I
10.1007/978-3-030-31456-9_9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Gait is a kind of advanced feature for human identification at a distance. It also contains rich temporal information. In the paper an innovative gait recognition model, Multiscale Temporal Network (MSTN), is designed to extract discriminative feature at multiple scales in the temporal domain. MSTN can build a temporal pyramid from four different temporal resolutions. That means the human body motion can be described from coarse to fine by the four pathways in the network. The method is verified on a popular databset, CASIA-B. The experimental results show that the proposed MSTN can observably improve the recognition rate and MSTN is a straightforward and effective solution. It also shows that there is great potential in gait feature extraction from the temporal domain.
引用
收藏
页码:75 / 83
页数:9
相关论文
共 20 条
  • [1] [Anonymous], 2011, 2011 INT JOINT C BIO, DOI DOI 10.1109/IJCB.2011.6117582
  • [2] Chao H., 2019, AAAI
  • [3] Development of health technology assessment in China: New challenges
    Chen, Yingyao
    He, Yao
    Chi, Xunyouzhi
    Wei, Yan
    Shi, Lizheng
    [J]. BIOSCIENCE TRENDS, 2018, 12 (02) : 102 - 108
  • [4] Learning Spatiotemporal Features with 3D Convolutional Networks
    Du Tran
    Bourdev, Lubomir
    Fergus, Rob
    Torresani, Lorenzo
    Paluri, Manohar
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 4489 - 4497
  • [5] SlowFast Networks for Video Recognition
    Feichtenhofer, Christoph
    Fan, Haoqi
    Malik, Jitendra
    He, Kaiming
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 6201 - 6210
  • [6] Convolutional Two-Stream Network Fusion for Video Action Recognition
    Feichtenhofer, Christoph
    Pinz, Axel
    Zisserman, Andrew
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 1933 - 1941
  • [7] Feng Y, 2016, INT C PATT RECOG, P325, DOI 10.1109/ICPR.2016.7899654
  • [8] Individual recognition using Gait Energy Image
    Han, J
    Bhanu, B
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2006, 28 (02) : 316 - 322
  • [9] View-Invariant Discriminative Projection for Multi-View Gait-Based Human Identification
    Hu, Maodi
    Wang, Yunhong
    Zhang, Zhaoxiang
    Little, James J.
    Huang, Di
    [J]. IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2013, 8 (12) : 2034 - 2045
  • [10] Kusakunniran W, 2010, COMPUTER VISION PATT