Analog Computing for Deep Learning: Algorithms, Materials & Architectures

被引:0
|
作者
Haensch, W. [1 ]
机构
[1] IBM Res, TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA
来源
2018 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM) | 2018年
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Analog, or neuromorphic, computing for Deep Learning (DL) utilizes the fact that matrix manipulations that are inherent in the back-propagation algorithm, can be performed at constant time, in parallel, on arrays with nonvolatile memory (NVM) elements in which the weights are encoded. We discuss the NVM material requirements that need to be met to achieve a classification accuracy on par with the conventional digital approaches, discuss advantages and drawbacks, and highlight opportunities that can take advantage using analog arrays.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Review of Deep Learning Algorithms and Architectures
    Shrestha, Ajay
    Mahmood, Ausif
    IEEE ACCESS, 2019, 7 : 53040 - 53065
  • [2] Deep Learning: Architectures, algorithms, applications
    Memisevic, Roland
    2015 IEEE HOT CHIPS 27 SYMPOSIUM (HCS), 2016,
  • [3] Deep In-Memory Architectures in SRAM: An Analog Approach to Approximate Computing
    Kang, Mingu
    Gonugondla, Sujan K.
    Shanbhag, Naresh R.
    PROCEEDINGS OF THE IEEE, 2020, 108 (12) : 2251 - 2275
  • [4] Scaling Deep Learning Algorithms on Extreme Scale Architectures
    Vishnu, Abhinav
    2018 IEEE INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM WORKSHOPS (IPDPSW 2018), 2018, : 854 - 854
  • [5] A tutorial survey of architectures, algorithms, and applications for deep learning
    Deng, Li
    APSIPA TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING, 2014, 3
  • [6] The Next Generation of Deep Learning Hardware: Analog Computing
    Haensch, Wilfried
    Gokmen, Tayfun
    Puri, Ruchir
    PROCEEDINGS OF THE IEEE, 2019, 107 (01) : 108 - 122
  • [7] Autonomous Driving Architectures: Insights of Machine Learning and Deep Learning Algorithms
    Bachute, Mrinal R.
    Subhedar, Javed M.
    MACHINE LEARNING WITH APPLICATIONS, 2021, 6
  • [8] Classification of Urban Waste Materials with Deep Learning Architectures
    Sürücü S.
    Ecemiş Î.N.
    SN Computer Science, 4 (3)
  • [9] A review on quantum computing and deep learning algorithms and their applications
    Valdez, Fevrier
    Melin, Patricia
    SOFT COMPUTING, 2023, 27 (18) : 13217 - 13236
  • [10] A review on quantum computing and deep learning algorithms and their applications
    Fevrier Valdez
    Patricia Melin
    Soft Computing, 2023, 27 : 13217 - 13236