Massively Parallel Identification of Privacy-Preserving Vehicle RFID Tags

被引:2
|
作者
Figueiredo, Rui [1 ]
Zuquete, Andre [1 ]
Oliveira e Silva, Tomas [1 ]
机构
[1] Univ Aveiro, IEETA, DETI, P-3810193 Aveiro, Portugal
来源
RADIO FREQUENCY IDENTIFICATION: SECURITY AND PRIVACY ISSUES, RFIDSEC 2014 | 2014年 / 8651卷
关键词
OWNERSHIP TRANSFER; PROTOCOL;
D O I
10.1007/978-3-319-13066-8_3
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This article proposes a massively parallel identification scheme of vehicle RFID tags. These tags use a pseudo-random identifier, which is the output of a hash function fed by a fixed secret key that uniquely identifies the tag and by two random challenges that change on each tag activation. The use of random challenges makes it extremely difficult for someone not knowing the secret key of a tag to track its multiple activations. For someone knowing all valid keys, finding out the key that generated a specific tag response requires a time-consuming exhaustive search, if the number of valid keys is large. This can be performed in a very efficient way on a general purpose graphics processing unit. Our simulations show that on a very demanding scenario a single Tesla S1070 system can identify in near real-time the tags generated by 100 single-lane highway RFID readers.
引用
收藏
页码:36 / 53
页数:18
相关论文
共 50 条
  • [21] Efficient Certificateless Conditional Privacy-Preserving Authentication for VANETs
    Zhou, Xiaotong
    Luo, Min
    Vijayakumar, Pandi
    Peng, Cong
    He, Debiao
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (07) : 7863 - 7875
  • [22] A comprehensive survey on authentication and privacy-preserving schemes in VANETs
    Mundhe, Pravin
    Verma, Shekhar
    Venkatesan, S.
    COMPUTER SCIENCE REVIEW, 2021, 41
  • [23] Privacy-Preserving Authentication Based on Group Signature for VANETs
    Zhu, Xiaoyan
    Jiang, Shunrong
    Wang, Liangmin
    Li, Hui
    Zhang, Weidong
    Li, Zan
    2013 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2013, : 4609 - 4614
  • [24] A comprehensive survey and taxonomy on privacy-preserving deep learning
    Tran, Anh-Tu
    Luong, The-Dung
    Huynh, Van-Nam
    NEUROCOMPUTING, 2024, 576
  • [25] Efficient group signatures for privacy-preserving vehicular networks
    Malina, Lukas
    Vives-Guasch, Arnau
    Castella-Roca, Jordi
    Viejo, Alexandre
    Hajny, Jan
    TELECOMMUNICATION SYSTEMS, 2015, 58 (04) : 293 - 311
  • [26] Privacy-Preserving Data Mining: Methods, Metrics, and Applications
    Mendes, Ricardo
    Vilela, Joao P.
    IEEE ACCESS, 2017, 5 : 10562 - 10582
  • [27] Expedite Privacy-Preserving Emergency Communication Scheme for VANETs
    Chen, Long
    Jia, Xuedan
    Meng, Lixia
    Wang, Liangmin
    INTERNATIONAL JOURNAL OF DISTRIBUTED SENSOR NETWORKS, 2013,
  • [28] LPTM: Lightweight and privacy-preserving traffic monitoring scheme
    Jiang, Sheng
    Cheng, Hongyuan
    Liu, Yining
    INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS, 2022, 35 (13)
  • [29] Towards Privacy-Preserving Cloud Storage: A Blockchain Approach
    Zhang, Jia-Shun
    Xu, Gang
    Chen, Xiu-Bo
    Ahmad, Haseeb
    Liu, Xin
    Liu, Wen
    CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 69 (03): : 2903 - 2916
  • [30] Privacy-Preserving Authentication Scheme for Connected Autonomous Vehicles
    Karabulut-Kurt, Gunes
    Nari-Baykal, Kubra
    Ozdemir, Enver
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (06) : 4998 - 5010