Lower bounds for generalized eigenvalues of the quasilinear systems

被引:20
|
作者
Tang, X. H. [1 ]
He, Xiaofei [1 ,2 ]
机构
[1] Cent S Univ, Sch Math Sci & Comp Technol, Changsha 410083, Hunan, Peoples R China
[2] Jishou Univ, Coll Math & Comp Sci, Jishou 416000, Hunan, Peoples R China
关键词
Quasilinear system; Lyapunov-type inequality; Generalized eigenvalue; Lower bound; LYAPUNOV-TYPE INEQUALITY; 1ST EIGENVALUE; ASYMPTOTIC-BEHAVIOR; P-LAPLACIAN;
D O I
10.1016/j.jmaa.2011.06.026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish several new Lyapunov-type inequalities for two classes of one-dimensional quasilinear elliptic systems of resonant type, which generalize or improve all related existing ones. Then we use the Lyapunov-type inequalities obtained in this paper to derive a better lower bound for the generalized eigenvalues of the one-dimensional quasilinear elliptic system with the Dirichlet boundary conditions. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:72 / 85
页数:14
相关论文
共 50 条
  • [1] LOWER BOUNDS FOR ORLICZ EIGENVALUES
    Salort, Ariel
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2022, 42 (03) : 1415 - 1434
  • [2] QUASILINEAR EIGENVALUES
    Fernandez Bonder, Julian
    Pinasco, Juan P.
    Salort, Ariel M.
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2015, 56 (01): : 1 - 25
  • [3] On Relative Perturbation Bounds for Generalized Eigenvalues
    Zhan, Xuzhou
    Zhan, Shilin
    PROCEEDINGS OF THE THIRD INTERNATIONAL WORKSHOP ON MATRIX ANALYSIS AND APPLICATIONS, VOL 3, 2009, : 281 - 285
  • [4] Lower bounds for fractional Laplacian eigenvalues
    Wei, Guoxin
    Sun, He-Jun
    Zeng, Lingzhong
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2014, 16 (06)
  • [5] Lower and upper bounds for stokes eigenvalues
    Yue, Yifan
    Chen, Hongtao
    Zhang, Shuo
    CALCOLO, 2024, 61 (03)
  • [6] Lower Bounds for Eigenvalues of the Stokes Operator
    Hu, Jun
    Huang, Yunqing
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2013, 5 (01) : 1 - 18
  • [7] Estimates for eigenvalues of quasilinear elliptic systems
    De Napoli, Pablo L.
    Pinasco, Juan P.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 227 (01) : 102 - 115
  • [8] Guaranteed Lower Bounds for Eigenvalues of Elliptic Operators
    Jun Hu
    Yunqing Huang
    Rui Ma
    Journal of Scientific Computing, 2016, 67 : 1181 - 1197
  • [9] Guaranteed Lower Bounds for Eigenvalues of Elliptic Operators
    Hu, Jun
    Huang, Yunqing
    Ma, Rui
    JOURNAL OF SCIENTIFIC COMPUTING, 2016, 67 (03) : 1181 - 1197
  • [10] Lower bounds of the eigenvalues of compact manifolds with positive Ricci curvature
    Jun Ling
    Annals of Global Analysis and Geometry, 2007, 31