Critical exponents for nonlinear diffusion equations with nonlinear boundary sources

被引:8
作者
Pang, Peter Y. H. [2 ]
Wang, Zejia [1 ]
Yin, Jingxue [1 ]
机构
[1] Jilin Univ, Dept Math, Changchun 130012, Peoples R China
[2] Natl Univ Singapore, Dept Math, Singapore 117543, Singapore
基金
中国国家自然科学基金;
关键词
critical global exponent; critical Fujita exponent; nonlinear diffusion equation;
D O I
10.1016/j.jmaa.2008.01.093
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the large time behavior of solutions to two types of nonlinear diffusion equations with nonlinear boundary sources on the exterior domain of the unit ball. We are interested in the critical global exponent q(0) and the critical Fujita exponent q(c) for the problems considered, and show that q(0) = q(c) for the multi-dimensional porous medium equation and non-Newtonian filtration equation with nonlinear boundary sources. This is quite different from the known results that q(0) < q(c) for the one-dimensional case. (c) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:654 / 662
页数:9
相关论文
共 26 条
[1]   The role of critical exponents in blow-up theorems: The sequel [J].
Deng, K ;
Levine, HA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 243 (01) :85-126
[2]  
Deng K., 1994, Acta Math. Uni. Comenianae, V63, P169
[3]  
Dibenedetto E, 1993, DEGENERATE PARABOLIC, DOI DOI 10.1007/978-1-4612-0895-2
[4]   The blow-up profile for a fast diffusion equation with a nonlinear boundary condition [J].
Ferreira, R ;
De Pablo, A ;
Quiros, F ;
Rossi, JD .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2003, 33 (01) :123-146
[5]   Critical exponents and collapse of nonlinear Schrodinger equations with anisotropic fourth-order dispersion [J].
Fibich, G ;
Ilan, B ;
Schochet, S .
NONLINEARITY, 2003, 16 (05) :1809-1821
[6]   On critical exponents for a semilinear parabolic system coupled in an equation and a boundary condition [J].
Fila, M ;
Levine, HA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 204 (02) :494-521
[7]  
FUJITA H, 1966, J FAC SCI U TOKYO 1, V13, P109
[8]   Blow-up and critical exponents for parabolic equations with non-divergent operators: dual porous medium and thin film operators [J].
Galaktionov, VA ;
Pohozaev, SI .
JOURNAL OF EVOLUTION EQUATIONS, 2006, 6 (01) :45-69
[9]   On critical Fujita exponents for heat equations with nonlinear flux conditions on the boundary [J].
Galaktionov, VA ;
Levine, HA .
ISRAEL JOURNAL OF MATHEMATICS, 1996, 94 :125-146
[10]   On critical exponents for the heat equation with a mixed nonlinear Dirichlet-Neumann boundary condition [J].
Hu, B ;
Yin, HM .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 209 (02) :683-711